
eZ publish
basics

Balazs Halasy

eZ publish basics
by Balazs Halasy

Copyright © 2006 by eZ systems AS. All rights reserved.

Printed in Norway.

No part of this work may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, including photocopying, recording, or by any information or retrieval system, without the prior
written permission of the publisher. Electronic versions of this document will be distributed under more
permissive terms. Please visit http://www.ez.no/ezpress for more details.

eZ press and eZ publish are trademarks of eZ systems AS. Other product and company names mentioned
in this book may be the trademarks of their respective owners. We use trademark names in an editorial
fashion to the benefit of the trademark holder; therefore, these names are not marked with trademark
symbols. All terms known to be trademarks have been appropriately capitalized. We cannot attest to the
accuracy of this usage, and usage of a term in this book should not be regarded as affecting the validity of
any trademark or servicemark.

While every effort has been made to ensure the accuracy of the contents of this book, the publishers and
author assume no responsibility for errors or omissions, or for damages resulting from the use of the
information in this book. The information is provided on an ”as is” basis, with no express or implied
warranty.

Managing Editor: Jennifer Zickerman
Technical Editors: Zak Greant, Vidar Langseid, Jan Kudlicka

Copy Editors: Mandy Moore, Jennifer Zickerman
Cover Design: Edison Reklamebyrå

Printing: Erik Tanche Nilssen AS

International Standard Book Number:
ISBN-10: 82-92797-00-9

ISBN-13: 978-82-92797-00-9

First printing: June, 2006

eZ press, a division of eZ systems AS
Kverndalsgate 8, Postboks 253, N-3701, Skien, Norway

Phone: + 47 35 58 70 20
Fax: + 47 35 58 70 21

Email: info@ez.no

http://www.ez.no

Table of Contents

Preface .. 11
About eZ publish .. 11
Target audience and usage .. 12
Contents ... 12
Typographical conventions .. 13
About eZ systems .. 13
Contact eZ systems .. 13
Acknowledgments ... 13

1. Installation ... 15
Installation requirements .. 15

Apache web server ... 16
PHP scripting engine .. 16
Database server .. 16
Image conversion system (optional) .. 17

Installing eZ publish ... 17
Setting up a database .. 17
Downloading eZ publish .. 18
Unpacking eZ publish ... 18

The Setup Wizard .. 19
Initiating the Setup Wizard .. 19
Running the installation .. 19

2. Concepts and basics .. 31
The architecture of eZ publish .. 31

The libraries .. 32
The kernel ... 32
The modules ... 32

Directory structure .. 33
Content and design ... 34

Content ... 34
Design ... 34

4 5

The separation of content and design .. 34
Storage .. 35
Content management .. 36

A typical example .. 36
Content management in eZ publish .. 36
Datatypes ... 37
The content class .. 38
Class attributes ... 41
The content object .. 43
Object versioning .. 45
Multiple languages ... 49
The content node .. 52
The content node tree .. 54
Top-level nodes ... 56
Node visibility .. 58
Sections ... 61
URL storage .. 62
Information collection .. 63

Configuration .. 64
File structure ... 64
Configuration overrides ... 64
Site management .. 65
Access methods ... 67

Modules and views ... 69
Module execution .. 69
Module views .. 70
The default request ... 71

URL translation .. 71
System URLs ... 71
Virtual URLs .. 72
URL handling .. 74

Designs ... 74
Default designs .. 74
Design directory structure .. 75
Design combinations .. 75

Access control ... 77
User ... 78

eZ publish basics

4 5

User group .. 79
Policy ... 79
Role ... 80

Webshop .. 80
Value added taxes .. 81
The price datatype .. 82
Discount rules ... 82
Shop-related datatypes ... 83

Workflows .. 83

3. Templates .. 85
Template basics .. 85

Template generation .. 86
Node templates ... 87

Custom node templates ... 89
The $node variable ... 89

System templates .. 89
Custom system templates .. 89
Commonly used system templates ... 90

The pagelayout ... 90
The document type ... 91
The HTML tag .. 92
The head tag .. 92
The body tag ... 93

The page head .. 94
Title .. 95
Meta tags .. 95
Link tags ... 96

Variables in pagelayout .. 97
$module_result ... 98

The template language .. 102
Curly brace issues ... 102
Comments ... 103
Variable types .. 104
Variable usage ... 107
Array and object inspection .. 111
Control structures .. 112

Table of Contents

6 7

Functions and operators .. 115
Basic template tasks .. 117

Template inclusion ... 117
Output washing .. 117
String concatenation ... 117
Custom view parameters .. 118

URL handling ... 118
ezurl ... 119
ezimage .. 120
ezdesign ... 120

Information extraction .. 121
Fetching a single node .. 121
Fetching multiple nodes .. 121
Outputting node and object data ... 122

The template override system .. 124
Multiple / conflicting overrides ... 126
Template override example ... 127

4. Common solutions ... 129
Setting up siteaccesses for a new site .. 129
Setting up a virtual host-based solution .. 134
Periodic and scheduled maintenance ... 136

Cronjobs on UNIX/Linux ... 136
Scheduled tasks on Windows .. 137

Creating a custom design ... 137
Adding images .. 138
Creating a simple menu ... 138
Adding custom templates .. 139

Adding an override template .. 139
Adding a custom system template .. 140

Including breadcrumbs in the pagelayout ... 140
Including a search interface in the pagelayout ... 141
Changing the search page limit .. 141
Reindexing the search ... 142
Including and using a page navigator .. 143
Resetting the administrator password .. 144

eZ publish basics

6 7

Logging in as another user ... 144
Using the “forgotpassword” feature ... 144
Running a database query ... 144

Changing the username of a user ... 145
Adding login functionality .. 145
Creating a protected area .. 146
Creating a custom XML tag .. 147
Creating a feedback form ... 148
Adding a button that creates a new node ... 149

Permissions .. 150
The edit template ... 151
Automatic redirection after editing ... 151

Adding an edit button .. 152
Adding a remove button .. 152
Printer-friendly and alternate output ... 153

Setting up alternate layouts ... 153
PDF export of nodes ... 154
Using the {node_view_gui ...} function ... 154
Using the “tip a friend” feature .. 157
Wrapping PHP functions .. 157
Custom HTTP meta tags ... 158
Disabling access to modules and views .. 158
Debugging a live site .. 159
Backing up and restoring a site .. 159

Dumping the database .. 160
Backing up the eZ publish directory .. 160
Restoring an archived eZ publish directory .. 160
Restoring an eZ publish database .. 160

5. Extensions .. 161
Extension overview ... 161
Directory structure .. 162
Extension activation .. 162
Design extensions .. 163

Creating a design extension .. 163

Table of Contents

8 9

Datatype extension ... 164
Creating a new datatype ... 164
Programming the datatype ... 165

Template operator extension ... 167
Creating new template operators ... 168
Programming the operators ... 169

Workflow extensions .. 171
Status codes ... 171
Creating a custom event ... 173
Programming the event ... 173
Event example .. 175

A. Appendix .. 177
Datatypes .. 177
Modules ... 178
XML tags .. 179

Headings ... 179
Bold text ... 179
Italic text ... 180
Unformatted text .. 180
Lists ... 180
Tables ... 180
Hyperlinks .. 181
Object embedding ... 183
Custom tags ... 183

Glossary ... 185
Index... 187

eZ publish basics

8 9

List of Figures
 1.1. Step 01: Welcome page .. 20
 1.2. Step 02: System check .. 21
 1.3. Step 03: Outgoing e-mail ... 22
 1.4. Step 04: Database selection ... 23
 1.5. Step 05: Database initialization ... 24
 1.6. Step 06: Language support ... 24
 1.7. Step 07: Site type .. 25
 1.8. Step 08: Site functionality ... 26
 1.9. Step 09: Access method ... 26
 1.10. Step 10: Site details .. 27
 1.11. Step 11: Site security .. 28
 1.12. Step 12: Site registration ... 29
 1.13. Step 13: Finished .. 30
 2.1. Libraries, kernel and modules ... 32
 2.2. Content + Design = Web page .. 35
 2.3. Storage overview .. 35
 2.4. Example of a content class ... 38
 2.5. The class edit interface ... 39
 2.6. Datatypes, attributes, a content class and objects .. 43
 2.7. Example of a content object that consists of two versions ... 46
 2.8. Object state overview ... 48
 2.9. Content object structure (with versions and translations) ... 50
 2.10. Object - node relation ... 52
 2.11. Objects, nodes and the content node tree ... 54
 2.12. Content node tree ... 54
 2.13. Objects, nodes and the content node tree - multiple locations ... 55
 2.14. Content node tree with multiple locations .. 55
 2.15. Top-level nodes .. 57
 2.16. Hiding a visible node .. 59
 2.17. Hiding an invisible node ... 59

10 11

 2.18. Revealing a node with an invisible ancestor ... 60
 2.19. Revealing a node with an invisible ancestor ... 60
 2.20. Example of sections ... 61
 2.21. Example of a setup with two siteaccesses ... 66
 2.22. Siteaccess directory example ... 66
 2.23. Objects, nodes and the URL table ... 73
 2.24. The design fallback mechanism .. 76
 2.25. Users, groups, policies and roles .. 78
 2.26. The integrated e-commerce solution .. 81
 2.27. The workflow system ... 84
 3.1. Client - server cycle ... 86
 3.2. The module result as a part of the pagelayout .. 87
 3.3. Location of pagelayout and full view template in example design ... 88
 3.4. Pagelayout + node view full template ... 88
 3.5. The location of the pagelayout (main) template ... 90
 3.6. The structure of the “ezdate” object .. 107
 3.7. Typical components of a function call .. 116
 3.8. Typical components of a template operator call ... 116
 3.9. The override system .. 125
 3.10. Template override example .. 125
 3.11. Example content node tree .. 126
 3.12. Pagelayout + override templates in example design ... 127
 3.13. Template override example .. 128

eZ publish basics

10 11

Preface
eZ publish is the leading Open Source Enterprise Content Management System. It is used to
build powerful, flexible web solutions that enable people to share their information. With more
than 30,000 downloads per month (to a total of 1.6 million) and 150,000 installations, eZ pub-
lish is trusted by enterprises and organizations around the world.

This book, while based on the eZ publish documentation, has been expanded and organized
to suit a wider variety of needs. eZ publish course attendees, customers, partners, community
members and even employees of eZ systems were looking for something that could be used in
different settings. This book attempts to satisfy this group of needs by combining the most pop-
ular parts of the online documentation with additional material that shows how to solve every-
day tasks and create extensions. Overall, it provides a comprehensive introduction to the fun-
damental concepts and basics of eZ publish.

About eZ publish
eZ publish is a highly flexible and customizable content management system. It can be used to
build everything from personal home pages to multinational corporate web solutions with role-
based multi-user access, online shopping, discussion forums and other advanced functions.
Based on Open Source technologies and principles, it can be easily extended and customized
to interact with other solutions. The following list presents a brief overview of the most impor-
tant features and benefits of eZ publish:

n Dynamic and customizable content structure
n Separation of content and design
n Web-based Administration Interface
n Powerful and flexible template language
n Platform independence (UNIX/Linux, Windows, OS X, etc.)
n Flexible licensing (Open Source and Professional License options)
n Built-in content versioning
n Support for multiple languages, translations and locales
n Built-in search engine
n E-commerce / Webshop functionality
n Built-in plug-in system
n Role-based permission system

12 13

n Built-in workflow system
n Based on open and widely used standards (XHTML, XML, PDF, RSS, PHP, SQL,

LDAP, WebDAV, SOAP, etc.)

Target audience and usage
This book is written for web developers who want to learn the architecture of eZ publish. It is
targeted at beginners who have little or no experience with the system. It attempts to ease peo-
ple through the learning curve by providing a clear and well-structured overview of the system.
It should answer many of the questions that arise when people start working with eZ publish.

Although it is written by a developer for other developers, the material is presented in a light,
comprehensible fashion. Only when necessary does the book go deep into details. Instead, it at-
tempts to provide a broad understanding of how eZ publish works.

The book can be used in a self-study environment or as a textbook for the eZ publish technical
course. It can also be used while preparing for the eZ publish web developer certification. It is
compatible with eZ publish versions 3.5 to 3.8.

Contents
As mentioned above, this book can be used for multiple purposes. Thus, the different chapters
are loosely coupled. While it is not necessary to read the book from start to end, it is recom-
mended that you at least review the Concepts and basics chapter before proceeding with other
chapters. Concepts and basics provides fundamental information about the system architecture,
its mechanisms for managing content, configuration files, permissions and so on.

The chapters are organized as follows:

Chapter 1, Installation, provides an overview of the installation requirements and describes the
installation and configuration process. In addition, it covers miscellaneous issues that are relat-
ed to the installation process.

Chapter 2, Concepts and basics, introduces the fundamental concepts of the system. Develop-
ers who are new to eZ publish should read this chapter to learn the architecture and structure
of the system. This chapter is more abstract than technical; it is meant to teach broad concepts
rather than explain specific features.

Chapter 3, Templates, explains the eZ publish template system used for content presentation
and interaction. It describes both the template language and the way the system handles the
template files. It also covers the template override system.

Chapter 4, Common solutions, contains a collection of common solutions, tips and tricks that are
useful for a new eZ publish developer. Without delving into too much detail, this chapter con-
tains the information a typical developer needs to create basic but feature-rich eZ publish sites.

Chapter 5, Extensions, provides an introduction to extending eZ publish. It is targeted at devel-
opers who want to add custom functionality to the system. Because extensions are written in
the PHP programming language, some familiarity with programming concepts and practices is

eZ publish basics

12 13

required. After reading this chapter, a moderately experienced programmer will understand the
potential of the extension system and should be able to create eZ publish extensions.

The appendix contains a quick reference to the built-in datatypes, a list of the built-in modules
and a description of the tags supported by the XML block datatype.

The glossary contains an description of the acronyms used throughout the book.

Typographical conventions
n Code samples, functions, variable names, etc. are printed in monospace font.
n Filenames and paths are printed in monospace italic font.
n Commands are printed in monospace bold font.
n Elements of graphical user interfaces (such as buttons and field labels) are printed in

bold font.

About eZ systems
eZ systems is the creator of eZ publish, the leading Open Source Enterprise Content Manage-
ment System. Based on a philosophy of openness and information sharing, eZ systems com-
bines enterprise software with open source code and total product responsibility.

eZ systems was established in 1999. As of mid-2006, eZ systems employed approximately 70
people from 18 different countries, with offices in Norway, Ukraine, Germany, France and Can-
ada. The eZ crew is committed to delivering high-quality software and professional services
that contribute to the success of our partners, customers and community.

Contact eZ systems
Please visit our website at http://www.ez.no. Send questions, suggestions and comments to
info@ez.no.

All books in the eZ press series are available online at http:// www.ez.no/ezpress.

Acknowledgments
It is not until you undertake a book project that you realize how much effort it demands and
how much you rely on other people’s feedback, contributions, encouragement and patience.
Numerous individuals helped me along the way. Without them, this book would have never be-
come a reality. I want to give a big thanks to you all.

I would like to start by thanking our chief software engineer, Jan Borsodi, for providing de-
tailed explanations and hints. Even though he is constantly overloaded with a wide range of dif-
ficult tasks, he was always patient, polite and helpful.

A big thanks to Thomas Hellstrøm for translating my sometimes chaotic hand-drawn sketch-
es into cool illustrations, and for tolerating my demanding personality. Thomas was also one
of the people who worked on the documentation site and on the integration with http://
www.ez.no.

Typographical conventions

14 15

Thanks to Frederik Holljen who helped and supported me when we started the documentation
project. Thanks also to Kristian Hole, who in addition provided valuable feedback from various
workshops and training sessions. Ole Morten Halvorsen, Kåre Køhler Høvik and Jo Henrik En-
drerud also deserve thanks for showing me neat tricks. Jan Kudlicka and Vidar Langseid helped
a lot by reading through the code samples and finding mistakes. Thanks to Sergiy Pushchin,
Dmitry Lakhtyuk and Vadim Savchuck (also known as ”the guys from Ukraine”) who helped
with the initial documentation site and provided various pieces of information.

The eZ press team also deserves a big thanks for their hard work. Zak Greant and Jennifer Zick-
erman did an excellent job in editing the content. Their patience and professionalism encour-
aged me through to the very end. I also want to thank Terje Gunrell-Kaste, Hansi Von Gren-
zfeldt, Lukasz Serwatka, Aleksander Farstad and Bård Farstad for helping with project coor-
dination.

I would also like to thank my family and friends for being patient and tolerant during stress-
ful and difficult times. Last but not least, a big thanks to customers, course attendees, partners,
community members and the entire eZ crew for making this happen.

Balazs Halasy

eZ publish basics

14 15

Chapter 1. Installation
This chapter explains how to install and deploy eZ publish using the standard installation meth-
od. This option is the most commonly used and recommendedway of installing eZ publish. It
assumes that eZ publish is being installed in an environment where the necessary prerequisites
are already installed and configured. These prerequisites include a web server and a database
management system (like MySQL or PostgreSQL). The actual installation process consists of
the following steps:

1. Creating and using a database
2. Downloading a compressed eZ publish distribution
3. Unpacking the eZ publish distribution
4. Configuring eZ publish using the web-based Setup Wizard

Once these steps are completed, eZ publish will be ready to use.

Tip
Note that eZ publish supports multiple installation methods. While only the most commonly
used approach will be covered in this book, the other installation methods include:

n Normal installation: Provides a mix of convenience and control. This is the most com-
monly used and recommended installation method.

n Bundled installation: A bundled installation contains eZ publish and the additional
software (Apache, PHP, ImageMagick, etc.) required to run the system.

n Manual installation: The manual installation method is for experienced users who want
full control. All configuration is done manually.

n Automated installation: This method provides for automation of the installation pro-
cess. It is for experienced users and system administrators.

Refer to the online documentation for more information about alternate installation methods.

 Installation requirements
eZ publish works in conjunction with four other software components:

n Apache web server (version 1.3+ and 2.x as described below)
n PHP scripting engine (version 4.3.4+, not version 5)
n A relational database management system such as MySQL or PostgreSQL.

16 Chapter 1. Installation 17

n An image conversion system (if image scaling or conversion is required)

The first three software packages should be installed before eZ publish is deployed. The image
conversion system is optional and is only needed if you are planning to use eZ publish with im-
ages. The web server and the PHP scripting engine must run on the same machine as eZ pub-
lish. The database server may be run on a different machine.

The installation and setup of the software prerequisites is beyond the scope of this book. Please
refer to the documentation for each application for more information.

Apache web server
The Apache web server is the most popular web server in use. It is Free Software / Open Source
and can be downloaded from http:// www.apache.org. The latest stable release of Apache 1.3
should be used; at the time of writing, this was version 1.3.33. We recommend that you use the
latest version of the 1.3 branch. However, it is possible to use the 2.x series, but it must run in
prefork mode instead of threaded mode. This is because PHP libraries are not thread-safe. Note
that Apache 2.x for Windows is only available in threaded mode and thus it should not be used
to run eZ publish solutions on Windows-based systems. The 2.2.x versions might cause prob-
lems on all systems.

PHP scripting engine
PHP is Free Software / Open Source and can be downloaded from http:// www.php.net. eZ pub-
lish is written in the PHP scripting language and requires version 4 of the PHP scripting engine
to run. Version 4.3.4 or later of the engine should be used. Additionally, the engine should in-
clude the appropriate modules for communicating with the database server that will be used
with eZ publish. At the time of writing, PHP 5 does not work correctly with eZ publish and
should not be used. However, future releases of eZ publish will be compatible with PHP 5.

PHP memory limit issue

Ensure that the memory_limit setting in PHP’s php.ini configuration file is set to 64 MB
or greater. While normal operation of eZ publish only requires about 16 MB, some features and
operations (for example, the eZ publish Setup Wizard, PDF export and Unicode (UTF-8) sup-
port) require 64MB or more.

Database server
eZ publish stores content and data structures in a relational database. This means that a data-
base server has to be available for eZ publish at all times. By default, eZ publish is compatible
with the following relational database management systems:

n MySQL (http://www.mysql.com)
n PostgreSQL (http://www.postgresql.org)

The Setup Wizard will automatically detect the database server as long as it is running on the
same computer as the web server. If both MySQL and PostgreSQL are present, the Setup Wiz-
ard will prompt the user to select one of the databases. If the database server is running on a dif-

16 Chapter 1. Installation 17

ferent computer, then the Setup Wizard will request the user to enter the necessary connection
information.

 Oracle compatibility

The eZ publish Database Extension makes it possible to use Oracle as a database for eZ pub-
lish. This is a commercial extension which can be purchased from eZ systems. Please refer to
the following page for more information: http://ez.no/products/database_extension

Image conversion system (optional)
In order to scale, convert or modify images, eZ publish uses an external image conversion
software package. Either of the following software packages (both are Free Software / Open
Source) can be used:

n GD graphics library (bundled with with PHP version 4.3+)
n ImageMagick (http://www.imagemagick.org)

ImageMagick supports more formats than GD and usually produces better results (better scal-
ing, etc.). The Setup Wizard will automatically detect the available image conversion soft-
ware.

Installing eZ publish
The prerequisites for a standard installation must be complete before proceeding with the eZ
publish installation. Please read the previous section if you’re not sure about the requirements.
Proceed only if you have access to a Linux/UNIX/Mac OS X or Windows environment with
Apache, PHP, MySQL or PostgreSQL already installed and running. This section will guide
you through the following steps:

n Setting up a database (MySQL or PostgreSQL)
n Downloading eZ publish
n Unpacking eZ publish
n Starting the Setup Wizard

Setting up a database
Before running the Setup Wizard, you must create the eZ publish database. The following sec-
tion explains how to set up a MySQL or PostgreSQL database using their respective command-
line interfaces.

MySQL

1. Create a database user for eZ publish:
$ mysql -u root -p -e ”GRANT ALL \
ON ezpublish_db.* TO \
ezpublish@localhost \
IDENTIFIED BY ‘secret’”

Installing eZ publish

18 Chapter 1. Installation 19

This example creates a MySQL user called ”ezpublish”. The user’s password will be set to ”se-
cret”. The user will have access to all tables of a database called ”ezpublish_db”.

2. (Optional) For security reasons, remove the ezpublish user’s password from the com-
mand-line history:

a. First, show the last two items in the shell’s history using the history command.
$ history 2

b. Second, examine the output of the history command. Find the number of the history
entry that contains the command used to create the user. Then run history again, us-
ing the -d (delete) option to delete the history entry.

$ history -d 198

3. Create a database for eZ publish:
$ mysql -u ezpublish -p -e \
”CREATE DATABASE ezpublish_db”

PostgreSQL

1. Become the PostgreSQL super user (normally called ”postgres”):
$ su postgres

2. Create a PostgreSQL user for eZ publish:
$ createuser ezpublish

3. Create a database for eZ publish:
$ createdb ezpublish_db

4. Log out as the PostgreSQL super user:
$ logout

Downloading eZ publish
The latest stable version of eZ publish can be downloaded from http:// ez.no/download. Win-
dows users should download the .zip archive.

Unpacking eZ publish
Use a dearchiving / decompression tool to unpack the eZ publish distribution to a web-served
directory (that is, a directory accessible via a web browser). The following example shows us-
age of the tar utility to unpack a tar.gz file on a Linux/UNIX/Mac OS X system. It assumes
that the tar and the gzip utilities are available):

$ tar xvfz \
ezpublish-version_number.tar.gz -C \
web_served_directory

18 Chapter 1. Installation 19

Parameter Description
version_number The version number of eZ publish that was downloaded
web_served_directory Full path to a directory that is served by the web server. This can be the path to

the document root of the web server, or a personal web directory (usually called
public_html/ or www/, and located inside a user’s home directory).

The extraction utility will unpack eZ publish into a subdirectory called ezpublish-3.x.x.
Feel free to rename this directory to something intuitive like ”my_site”.

The Setup Wizard
This section contains a comprehensive guide to the web-based Setup Wizard of eZ publish. The
Setup Wizard is designed to ease the initial configuration of the system. It can be started via a
web browser when the installation described in the previous sections is completed.

 Initiating the Setup Wizard
The Setup Wizard is run by accessing the index.php file located in the root of the eZ pub-
lish directory using a web browser. It will be automatically run the first time someone access-
es the index.php file. The following examples assume that we are using a server with the
hostname ”www.example.com” and that, after unpacking, the eZ publish directory was re-
named ”my_site”.

Document root example

If eZ publish was unpacked into a directory called my_site under the document root, the Set-
up Wizard can be started by browsing to ”http:// www.example.com/my_site/
index.php”.

Home directory example

If eZ publish was unpacked to a web-served directory located inside the home directo-
ry of a user with the username ”peter”, (usually called ”public_ html”, ”www”, ”ht-
tp”, ”html” or ”web”), the Setup Wizard can be started by browsing to ”http://
www.example.com/~peter/my_site/index.php”.

Tip
To determine which directory name is used for a web-served directory, look at the UserDir
directive in the Apache httpd.conf file.

Running the installation
The Setup Wizard does not store or modify any data before the final step of the setup is com-
pleted. If needed, you may safely re-start the Setup Wizard by reloading the URL but omit-
ting the GET string (for example, ”http://example.com/index.php?some+data
+here” would become ”http://example.com/index.php”). The back button (lo-
cated at the bottom of the Setup Wizard interface) can be used to jump back to previous steps
in order to modify settings. (Note that the Setup Wizard varies from version to version. In ad-

The Setup Wizard

20 Chapter 1. Installation 21

dition, some steps may be skipped depending on the environment into which eZ publish is be-
ing deployed.)

A typical setup cycle consists of 13 steps:
 1. Welcome page
 2. System check
 3. Outgoing e-mail
 4. Database choice (optional)
 5. Database initialization
 6. Language support
 7. Site type
 8. Site functionality
 9. Access method
 10. Site details
 11. Site security
 12. Site registration
 13. Finish

Welcome page

Figure 1.1. Step 01: Welcome page

20 Chapter 1. Installation 21

This is the first page of the Setup Wizard. By clicking Next, the Wizard will either proceed to
the System Check page (if the installer identifies configuration issues or errors that need to be
fixed) or to the Outgoing E-mail page (if everything is okay).

System check
This page usually appears if configuration issues or errors are detected.

Figure 1.2. Step 02: System check

Issues
One or more problems or errors may be shown on this page. For each problem, a solution is
suggested below the description of the problem itself. The Setup Wizard will most likely sug-
gest the execution of various commands (for example, to fix file or directory ownerships, per-
missions, etc.). These commands must be executed using a system shell. Simply copy the com-
mands from the browser window and paste them into a shell window. The Setup Wizard will
run the system check again when the Next button is clicked. The System Check page will keep
reappearing until all issues have been fixed (or ignored, as described in the next section). When
all issues have been fixed, the Setup Wizard will proceed to the next screen.

Warning
If you are unfamiliar with the shell commands suggested by the Setup Wizard, consult a more
experienced user for assistance.

Running the installation

22 Chapter 1. Installation 23

Ignoring tests
Some non-fatal errors can be ignored by selecting the checkbox labeled Ignore this test. How-
ever, we recommend that you fix all errors rather than ignoring them.

 Outgoing e-mail

The system uses e-mail to send out messages to users, the site administrator and so on. This
page is used to determine how eZ publish delivers outgoing e-mail. There are two options:

n Direct delivery via sendmail (sendmail must be installed and configured on the eZ pub-
lish server)

n Indirect delivery using an SMTP server

On Linux/UNIX/Mac OS X, try to use sendmail; use SMTP if sendmail is unavailable. On Win-
dows, use SMTP.

Figure 1.3. Step 03: Outgoing e-mail

Sendmail

E-mail is delivered directly using the sendmail mail transfer agent. The agent must be running
on the same host as the web server. The sendmail binary is usually available on most Linux/
UNIX/Mac OS X systems. Note that modern Mail Transfer Agents (MTAs) like Qmail and
Postfix are able to emulate sendmail. eZ publish will send all outgoing mails to sendmail, which
will take care of the actual delivery process. If sendmail or a compatible MTA is not available
then SMTP should be used.

22 Chapter 1. Installation 23

SMTP
Mail is delivered via an SMTP server. An SMTP server can be thought of as a local post office.
eZ publish will send all outgoing messages to the SMTP server, which will handle the delivery
process. At a minimum, the hostname of the SMTP server must be specified. An SMTP server
should be used when sendmail is not available.

 Database configuration

Figure 1.4. Step 04: Database selection
This dialog is used to select the database server. The Setup Wizard will automatically detect the
database support configured for the PHP scripting engine. If both MySQL and PostgreSQL are
configured, you will be given the option to choose a database. If PHP is configured for only one
type of database, eZ publish will automatically use this database and the database choice dialog
will not be displayed. If no database is configured, (for example, if the database is running on a
different computer), the Setup Wizard will request connection information.

Database initialization

This step provides eZ publish with the required information about the database server. Informa-
tion about the hostname of the server running the database engine, along with a username and
password, must be provided. If MySQL is used, the Setup Wizard will attempt to connect to the
database after the Next button is pushed. The setup will only continue if it is able to connect to
the specified MySQL server with the specified username and password. If PostgreSQL is used,
the connection parameters are tested during a later stage of the Setup Wizard.

Running the installation

24 Chapter 1. Installation 25

Figure 1.5. Step 05: Database initialization

 Language support

Figure 1.6. Step 06: Language support

24 Chapter 1. Installation 25

This step is used to configure the primary language for the eZ publish installation. You can also spec-
ify one or more additional languages. Additional languages enable the translation of site content. For
example, additional languages make it possible to have the same news article available in both Eng-
lish and Norwegian. The choice of primary language also affects things like date and number for-
mats, the language used by the Administration Interface and so on. These settings can be changed at
a later stage by altering the eZ publish configuration files. Additional languages can be reconfigured
at any time (even when the site is up and running) via the Administration Interface. (This step looks
different in eZ publish 3.8, as the multilanguage feature was enhanced in that version.) Refer to the
Multiple languages section of the Concepts and basics chapter for more information.

 Site type

Figure 1.7. Step 07: Site type
This step is used to specify a built-in site type. eZ publish comes with a several basic site types
(News, Company, Intranet, Gallery, etc.). These examples are mostly for the purpose of dem-
onstration and learning. However, it is possible to choose one example and use it as a basic
framework for a custom site. A demo site usually contains some artwork (images), CSS code,
content and template files. The plain type should be used to set up a custom site. It contains a
minimum set of templates and features. (This part of the Wizard looks different in eZ publish
3.8 because of the new package system.)

 Site functionality
This step is used to select additional features and demo data for installation. For example, you
can select a package that includes contact form functionality. The features in this list are sim-
ply additional data structures (content classes) along with display logic (templates) that will be
added to the final configuration. These packages can also be installed at a later stage using the
packages section of the Administration Interface.

Running the installation

26 Chapter 1. Installation 27

Figure 1.8. Step 08: Site functionality

 Access method

Figure 1.9. Step 09: Access method

26 Chapter 1. Installation 27Running the installation

This step is used to configure the access method that should be used when eZ publish receives
a request. There are three options:

n URL
n Port
n Hostname

URL
When the URL access method is used, eZ publish selects the site that should be accessed based
on the contents of the URL (in particular the part following index.php). This is the default
and most generic option. It doesn’t require any additional configuration. Use this setting when
installing eZ publish for the first time.

Port
When the port access method is used, eZ publish selects the site that should be accessed based
on a port number that is specified in the URL. The port number must be appended to the host-
name of the web server, for example: ”http://www.example.com:81/index.php”.
This option requires additional web server and firewall configuration.

Hostname
When this access method is used, each site is assigned a unique hostname. For example,
”www.example.com” and ”admin.example.com” can be assigned to the public and
the Administration Interface respectively. This option requires additional web and DNS serv-
er configuration.

 Site details

Figure 1.10. Step 10: Site details

28 Chapter 1. Installation 29

This step is used to modify settings related to the site that is being installed. The available da-
tabases will be displayed in the database dropdown menu. The Refresh button can be used to
update the list (if a database is being created while the Setup Wizard is running). If the select-
ed database already contains data, the Site Details page will reappear and ask what to do. Pos-
sible actions are:

n Leave the data and add new
n Remove existing data
n Leave the data and do nothing
n I’ve chosen a new database

Use the last option if another database has been chosen. If the chosen database already contains
data that can be deleted then use the ”Remove existing data” option.

 Site security

Figure 1.11. Step 11: Site security

This step suggests some basic modifications that should be carried out to enhance the security
of the site being installed. The suggested security improvements help protect the configuration
files from unwanted access in a non-virtual host environment. These precautions are only nec-
essary if you are configuring a site for public use.

28 Chapter 1. Installation 29

 Site registration

Figure 1.12. Step 12: Site registration

This step allows you to control whether the Setup Wizard should send an email to eZ systems
or not. The information in the e-mail will be used internally for statistics and for improving eZ
publish. No confidential data will be transmitted and eZ systems will not misuse or sell these
details. The following information will be sent:

n System details (OS type, etc)
n Test results
n Type of database being used
n Site name
n Site URL
n Which languages were chosen for the site

Running the installation

30 Chapter 1. Installation 31

Finished

Figure 1.13. Step 13: Finished

The Setup Wizard has finished and eZ publish is ready for use. Use the links to access the var-
ious interfaces (public site, Administration Interface, etc.).

30 Chapter 1. Installation 31

Chapter 2. Concepts and basics
This chapter introduces the fundamental concepts of eZ publish. Developers who are new to
eZ publish should read this chapter to learn the architecture and structure of the system. This
chapter is more abstract than technical; it is meant to teach broad concepts rather than to ex-
plain specific functionality. Developers unfamiliar with eZ publish will be able to gain a broad
understanding of:

n The architecture of eZ publish
n The directory structure of an eZ publish installation
n The concepts and benefits of separating content from presentation
n How eZ publish stores and manages content
n How custom design is implemented in eZ publish
n The eZ publish configuration system
n How multiple sites can be managed using a single eZ publish installation
n The concept of modules and views
n How eZ publish handles URLs
n The structure of the workflow system
n How access rights and permissions are managed
n How the Webshop works

The architecture of eZ publish
This section describes the internal structure of eZ publish by presenting a brief overview of its
software layers. eZ publish is a complex, object-oriented application written in PHP. The sys-
tem consists of three major parts:

n Libraries
n Kernel
n Modules

The following illustration shows a simplified high-level conceptual view of the relationship be-
tween the main eZ publish components.

32 Chapter 2. Concepts and basics 33

Figure 2.1. Libraries, kernel and modules

The libraries
The libraries contain the reusable general-purpose PHP classes that are the main building
blocks of eZ publish functionality. While the libraries are independent of the eZ publish ker-
nel, some are inseparable from other libraries. (General-purpose PHP libraries are located in the
lib/ subdirectory beneath the root directory of an eZ publish installation.)

The kernel
The kernel is the core of eZ publish. It manages low-level and common functionality, such as
content handling, content versioning, access control, workflows, etc. The kernel consists of var-
ious modules that build upon and make use of the general-purpose libraries. In addition, the
kernel contains a collection of PHP classes that are used by the modules.

The modules
The eZ publish modules provide HTTP interfaces for web-based interaction with the system.
While some modules are an interface to kernel functionality, others are more-or-less independ-
ent of the kernel. eZ publish modules contain functionality for common end-user tasks. For ex-
ample, the content module provides interfaces for using a web browser to manage content.
The Modules section of the appendix contains a complete list and a short description of the
available modules. A module can be broken down into the following components:

n Views
n Fetch functions

A view is simply a web interface. For example, the search view of the content mod-
ule provides a web interface to the built-in search engine. Every eZ publish module provides

32 Chapter 2. Concepts and basics 33

at least one view. A fetch function extracts data via a module from within a template. For
example, the current_user fetch function of the user module is used to access informa-
tion related to the user who is currently logged in. Some modules provide fetch functions,
some do not.

 Directory structure
The eZ publish root directory contains multiple sub-directories. Each subdirectory is dedicated
to a specific part of the system and contains a structured collection of related files. The follow-
ing table gives an overview of the main eZ publish directories.

Directory Description
bin/ The bin/ directory contains various PHP, Perl and shell scripts. For example, it

contains the clearcache. php script that can be used to clear all eZ publish
caches from within a system shell. The scripts are mainly used for manual main-
tenance.

cronjobs/ The cronjobs/ directory contains miscellaneous scripts used for automated pe-
riodic maintenance.

design/ The design/ directory contains all design-related files such as templates, imag-
es, stylesheets, etc.

doc/ The doc/ directory contains documentation and change logs.
extension/ The extension/ directory contains eZ publish plugins. Extensions make it pos-

sible to create new modules, datatypes, template operators, workflow events and
so on.

kernel/ The kernel/ directory contains all the kernel files such as the core kernel classes,
modules, views, datatypes, etc. This is where the core of the system resides. These
files should not be modified unless you are an expert with eZ publish.

lib/ The lib/ directory contains general-purpose libraries. These libraries are collec-
tions of classes that perform various low-level tasks. The kernel uses these libraries.

packages/ The packages/ directory contains the bundled packages (themes, classes, tem-
plates, etc.) that can be installed using either the Setup Wizard or the Administra-
tion Interface.

settings/ The settings/ directory contains the main configuration files.
share/ The share/ directory contains static configuration files such as codepages, locale

descriptions, translations, icons, etc.
support/ The support/ directory contains the source code for additional applications that

can be used to do various advanced tasks. For example, it contains the lupdate
program that can be used to create and maintain the eZ translation files.

update/ The update/ directory contains various scripts that are used when an eZ publish
installation is being upgraded.

var/ The var/ directory contains cache files and logs. It also contains content that is
stored outside of the database (such as images and files). The size of this directory
generally increases as the system is used.

Directory structure

34 Chapter 2. Concepts and basics 35

Content and design
This section explains the concepts of content and discusses how design is applied. It is impor-
tant to understand the difference between content and design, how they interconnect and how
the system handles these fundamental elements. One of the keys to building a site that can be
easily managed and maintained is knowing how to use the system to clearly separate data from
presentation.

 Content
In the world of eZ publish, content and design are separate. Content is information that is or-
ganized and stored by eZ publish. For example, it may be the components of a news article (ti-
tle, intro, body, images), the properties of a car (make, model, year, color) and so on. In oth-
er words, all custom information that is stored for the purpose of later retrieval is referred to
as content.

Design
The presentation of content is determined by the design of a site. While content means struc-
tured data, design refers to the way the data is visually presented. Design includes the things
that make up a web interface: HTML, style sheets, images that are not a part of the content,
etc.

Templates

An eZ publish template is a custom HTML file that describes how particular types of content
should be presented. In addition to standard HTML syntax, it is possible to use eZ publish-spe-
cific code to, for example, extract content from the system. The system uses templates as the
fundamental unit of site design. For example, a template might dictate that a page should ap-
pear with the site’s title at the top and with the main content in the middle. When the page is
accessed, the content management system places the content into the appropriate locations in
the template. The HTML syntax in the built-in templates follows the XHTML 1.0 Transition-
al specification.

The separation of content and design
While content deals with storing and structuring data, design dictates how the content should
be presented. These elements combine to form a complete interface, as illustrated in the fol-
lowing diagram.

The system’s ability to handle this distinction is one of the key features of eZ publish. The sep-
aration of content and design provides the following benefits:

n Content authors and designers can work separately without conflicts
n Content can be easily published in multiple formats
n Content can be easily transferred and re-purposed
n Global redesigns and changes can be applied via simple modifications

34 Chapter 2. Concepts and basics 35

Figure 2.2. Content + Design = Web page

Storage
This section explains where eZ publish stores information that belongs to a specific website.
A typical eZ publish site consists of the following elements:

n Content
n Design-related files
n Configuration files

Figure 2.3. Storage overview

Content is structured and stored inside a database. This is true for all content except for images
and files, which are stored in the filesystem. The main reason for this is because the filesystem
is much faster than the database when it comes to storage and retrieval of large chunks of data.

Storage

36 Chapter 2. Concepts and basics 37

Storing files in the filesystem allows the web server to serve them directly, without needing to
access the database. In addition, this technique makes it easier to use external tools to manipu-
late, scan and index the contents of the uploaded files. For example, the built-in search engine
is capable of using external utilities to index the contents of various file formats (PDF, Word
documents, Excel spreadsheets, etc.). (Note that the clustering feature introduced in eZ publish
3.8 makes it possible to store all content in the database.)

Storing the files on the filesystem dramatically decreases the size of the database and makes it
easier to manage the data accessed by eZ publish. Everything related to design (template files,
CSS files, non-content-specific images, etc.) and configuration settings are also stored on the
filesystem. A complete backup of an eZ publish site must contain both a dump of the database
and a copy of the necessary files. The following illustration shows an overview of how the sys-
tem makes use of the database and the filesystem to store the different elements of a site. (Note
that as of version 3.8, all content can be stored in the database.)

Content management
This section describes how eZ publish handles content. The role of a content management sys-
tem is to organize and store content, regardless of type and complexity. The main goal of such
a system is to provide a well-structured, automated yet flexible solution, which allows informa-
tion to be freely distributed and instantly updated across various communication channels (such
as the World Wide Web, intranets and miscellaneous front- and back-end systems).

A typical example
Consider this scenario: a university needs to store information about its students. Many content
management systems offer static content types that relate to pages of the site. There might, for
example, be a ”person” type, consisting of attributes like ”name”, ”birthdate”, ”phone number”
and so on. To store information about students, the ”person” type would need to be extended to
include critical data like student ID numbers, department and so on. Even though some systems
allow for the creation of custom structures, the solution is often complicated and time-consum-
ing, requiring both program modification and manipulation of the database. In addition, subse-
quent upgrade and modification of the system becomes more complex.

Content management in eZ publish
Unlike many other content management systems, eZ publish does not use a ”one-size-fits-all”
approach. Instead of trying to fit data into rigid and predefined structures, the system allows the
creation of custom structures using a unique, object-oriented approach. This approach allows
for great flexibility and ease of maintenance. For example, using only the Administration In-
terface, the site developer for the university in our example can easily build custom structures
that exactly satisfy the university’s storage needs. This is one of the key features that makes eZ
publish a flexible and powerful system.

eZ publish also allows modification of the content structures at runtime. In other words, if the
custom student structure in the example needs to be modified, eZ publish will automatically al-
ter it based on the administrator’s actions. Attributes can be easily added, modified or removed
while the site is live.

36 Chapter 2. Concepts and basics 37

While the ability to create and modify content structures gives eZ publish power and flexibili-
ty, the eZ publish distribution also comes with a selection of predefined content structures, thus
allowing the developer to choose between the following scenarios:

n Use the built-in structures
n Use modified versions of the built-in structures
n Use only custom structures
n Use a combination of standard, modified and custom structures

An object-oriented content structure

The eZ publish content structure is based on ideas borrowed from objectoriented programming
languages like Smalltalk, C++ and Java. Superficially, ”object-oriented” means looking at the
world in terms of objects. In real life, people are surrounded by thousands of objects: furniture,
cars, pets, humans, etc. Each of these objects has identifying traits. This is conceptually the way
that eZ publish defines and manages content.

The system provides a set of fundamental building blocks and mechanisms that combine to pro-
vide a flexible content management solution. A data structure is described using a content class.
A content class is made up of attributes. An attribute can be thought of as a field, for example the
”birthdate” field in a structure designed to store information about students. The description of the
entire structure would be referred to as the ”student class”. The characteristics of the attributes in-
side the class are determined by the datatypes that were chosen to represent the attributes.

It is important to understand that a content class is just a definition of an arbitrary structure. In
other words, the class itself does not store any actual data. Once a content class has been de-
fined, it is possible to create instancesof that class. An instance of a content class is called a con-
tent object. Actual content is stored inside objects of different types (for example folders, arti-
cles, comments, employees, members, etc.). A content object consists of one or more versions.
The versioning layer makes it possible to have different versions of the same content. Each ver-
sion consists of one or more translations. The translation layer makes it possible to represent
the same version of the same content in multiple languages. A translation consists of attributes.
The attributes are the final elements in the content structure chain where data is stored.

The content objects are wrapped and organized via nodes that are placed inside a tree-like struc-
ture. This tree is often referred to as the node tree. The tree can in most cases be thought of
as the sitemap. The following sections contain comprehensive explanations related to the ele-
ments introduced in this section.

Datatypes
A datatype describes the type of value that can be stored in a variable. A datatype is the smallest
possible entity of storage. It determines how a specific type of information should be validated,
stored, retrieved and so on. eZ publish comes with a collection of fundamental datatypes that
can be used to build powerful and complex content structures. While these built-in datatypes
are sufficient for most scenarios, custom datatypes can also be created. Creating a custom da-
tatype requires PHP programming skills and some knowledge of the eZ publish kernel. The fol-
lowing table provides an overview of the most commonly used built-in datatypes.

Datatypes

38 Chapter 2. Concepts and basics 39

Datatype Description
Text line Stores a single line of unformatted text
Text block Stores multiple lines of unformatted text
XML block Validates and stores multiple lines of formatted text
Integer Validates and stores a numerical integer value
Float Validates and stores a numerical floating point value

Refer to the Datatypes section of the appendix for a list of all the built-in datatypes. Addition-
al datatypes, created by the members of the eZ publish community, can be downloaded from
http://ez.no/community/contribs/datatypes.

Input validation

As the list above indicates, some datatypes do more than just store data. For example, the XML
block datatype supports validation. This means that XML received as input will be validated
before it is stored in the database. In other words, the system will only accept and store data if
it is a valid XML structure. Input validation is supported by most (but not all) of the built-in da-
tatypes. The validation feature of a datatype cannot be turned on or off. In other words, if a da-
tatype supports validation, it will always try to validate the incoming data and the system will
never allow the storage of incorrectly formatted input.

The content class
A content class is a definition of a data structure. It does not store any data. A content class is
made up of attributes. The characteristics of an attribute are determined by the datatype that is
chosen for that specific attribute. By combining different datatypes to represent the attributes, it
is possible to create complex data structures. The following illustration shows the anatomy of a
content class called Article, which defines a data structure for storing news articles. It con-
sists of attributes for storing the article’s title, introduction and body.

Figure 2.4. Example of a content class

38 Chapter 2. Concepts and basics 39

The eZ publish distribution comes with a set of general-purpose classes that are designed for
typical web scenarios. For example, the default image class defines a structure for managing
image files. It consists of attributes for storing the name of the image, the image file, the caption
and alternate image text. The built-in classes can be modified to more closely match a specif-
ic need. In addition, it is possible to create completely new and custom classes. Content classes
are created, modified and removed using the Administration Interface. When a content class is
removed, all instances of that class (that is, the objects containing actual data) are also removed
from the system. The following screenshot shows the Class Edit interface.

Figure 2.5. The class edit interface

Class structure
A content class consists of the following fields:

n Name
n Identifier
n Object name pattern
n Container flag
n Attributes

 Name
The ”Name” field stores a user-friendly name for the content class. A class name can consist
of letters, digits, spaces and special characters. The maximum length is 255 characters. For ex-
ample, if a class defines a data structure for storing information about graduate students, the

The content class

40 Chapter 2. Concepts and basics 41

name of the class might be ”Graduate student”. This name will appear in various lists
throughout the Administration Interface, but it will not be used internally by the system. If no
name is provided, eZ publish will automatically generate a unique name when the class defi-
nition is stored.

Identifier

The ”Identifier” field is for internal use. However, it should be provided by the site administra-
tor. Class identifiers are used in configuration files, in templates and in PHP code. A class iden-
tifier can only consist of lowercase letters, digits and underscores. The maximum length is 50
characters. As an example, the identifier for the class named ”Graduate student” would
probably be ”graduate_student”. If no identifier is provided, eZ publish will automati-
cally generate a unique identifier when the class definition is stored.

 Object name pattern

The ”Object name pattern” determines how the name of an object (that is, an instance of a
class) is generated. The pattern usually consists of attribute identifiers (described later) that tell
eZ publish which attributes from the class it should use when generating the name of an object.
Each attribute identifier must be placed in angle brackets. Text outside angle brackets is includ-
ed without interpolation. If no pattern is provided, eZ publish will automatically use the iden-
tifier of the first attribute.

 Container flag

The ”Container flag” controls whether an instance of a class is allowed to have sub-items (of-
ten called ”child nodes” or ”children”). This setting only affects the Administration Interface
and was added to provide a more convenient environment for administrators and content au-
thors. In other words, it doesn’t control any low-level logic, it simply controls the way the
graphical user interface behaves.

Attributes

As described earlier, the structure of a content class is defined by the attributes it contains. Con-
tent classes contain one or more attributes. Class attributes can be added, removed and rear-
ranged at any time using the Administration Interface. If an attribute is added to a class, it will
be added to all instances of that class. If an attribute is removed, it will be removed from all in-
stances. (That is, when an attribute is removed, the associated data is deleted.)

Although it is possible to remove and add attributes using the Administration Interface, in some
cases these operations may corrupt the database. This may happen when there are too many in-
stances that need to be updated. If the required processing time exceeds the maximum execu-
tion time for the PHP scripts, the process will be interrupted and the database may be left in
an inconsistent state. At the time of writing, this problem can only be solved by increasing the
maximum execution time of PHP scripts, which is defined in the max_execution_time
setting in the php.ini configuration file. The default value is 30 seconds; it should be in-
creased to a couple of minutes. A more reliable solution in the form of a command-line tool for
manipulating attributes is planned for future releases of eZ publish.

40 Chapter 2. Concepts and basics 41Class attributes

 Class attributes
A content class is made up of one or more attributes, where each attribute is represented by a
datatype. The characteristics of an attribute are determined by the datatype chosen for that spe-
cific attribute. An attribute is made up of the following fields:

n Name
n Identifier
n Generic controls
n Datatype-specific controls

Name
The ”Name” field is used for storing a user-friendly name for the attribute. For example, if the
attribute is supposed to store birthdates, the name of the attribute would most likely be ”Date
of birth”. This string will appear in various places within the Administration Interface, but it
will not be used internally by the system. The name of an attribute can consist of letters, dig-
its, spaces and special characters. The maximum length is 255 characters. If no name is provid-
ed, eZ publish will automatically generate a unique name for the attribute when the class def-
inition is stored.

Identifier

The ”Identifier” of an attribute is for internal use. However, it must be provided by the site ad-
ministrator. In particular, attribute identifiers are used in configuration files, in templates and in
PHP code. An attribute identifier can only consist of lowercase letters, digits and underscores.
The maximum length is 50 characters. For example, if the attribute is supposed to store birth-
dates, the identifier of the attribute would probably be ”date_of_birth”. If no identifier is pro-
vided, eZ publish will automatically generate a unique identifier when the class definition is
stored.

Generic controls

Each attribute has a set of generic controls. These controls are the same for each attribute, re-
gardless (but not independent) of the datatype that represents the attribute. Controls can be en-
abled or disabled. The controls are:

n Required
n Searchable
n Information collector
n Translatable

Required

The ”Required” switch controls the behavior of the storage procedure for content objects (in-
stances of a content class). It can be used regardless of the datatype that represents the attribute.
If the required switch is enabled, the relevant attribute must be set before the content object can
be saved. When the required flag of an attribute is set, the system will keep rejecting the input
data until all required information is provided. If the required flag is not set, eZ publish will not

42 Chapter 2. Concepts and basics 43

care whether or not any data was provided for that attribute. When an attribute is added, the re-
quired switch is off. Note that input data will be validated according to the chosen datatype’s
validation rules, regardless of the state of the attribute’s required switch. In other words, even
if an attribute is not required, only valid data can be stored in the attribute. Input validation is
supported by most (but not all) of the builtin datatypes. The following example demonstrates
how these features actually work.

In this scenario, a content class is created that defines a data structure for storing informa-
tion about prisoners. The class would typically consist of various attributes for storing differ-
ent kinds of data: name, identification number, date of birth, cell, block, etc. Having at least
the name and the birthdate attributes set as required fields will eliminate the possibility of stor-
ing convict records without names and / or birthdates. If the birthdate attribute uses the built-in
”date” datatype, the system will only accept the input if the birthdate is in a valid date format.

 Searchable

The ”Searchable” switch is used to control whether the data stored for the attribute should be
indexed by the search engine or if it should be left unindexed. Refer to the Datatypes section of
the appendix to see which datatypes support search indexing.

Information collector
Attributes marked as ”Information collectors” allow users to input data while viewing a page.
The information collector switch is used to control the attribute’s behavior in View mode. The
default View mode behavior is the read-only display of the information that was entered while
in Edit mode. For example, when viewing a news article, the contents of the article are dis-
played but cannot be edited. However, if an attribute is marked as a collector, it will allow infor-
mation to be entered in View mode. This feature provides site interactivity, for example by be-
ing used to quickly create feedback forms. The contents of a form created using this technique
will be emailed to the site administrator (or to a specified address) once the form is submitted.
Information collection is only supported by a small set of the built-in datatypes (as described in
the Datatypes section of the appendix). The following example demonstrates how this feature
could be used to create a basic feedback form.

Imagine that a content class called ”Feedback form” is created using the following at-
tributes: name, subject and message. The subject and the message attributes would be marked
as information collectors. When an instance of this class is viewed, the subject and the message
attributes will be displayed as input fields along with a Send button.

 Translatable
The ”Translatable” switch controls whether data stored in the attribute should exist in only
one language (the default language) or whether it should be possible to translate the data in-
to additional languages. The translation mechanism is completely independent of the datatype
layer. In other words, this switch can be used regardless of the datatype chosen to represent the
attribute.

When an attribute is added, the translation switch is switched on by default. Turning it off is
typically useful when the attribute is supposed to store nontranslatable input, for example nu-
merical values, prices, e-mail addresses, etc.

42 Chapter 2. Concepts and basics 43

 Datatype-specific controls

An attribute can have additional controls that are specific to the attribute’s datatype. Some da-
tatypes allow fine-grained customization, some do not. For example, the built-in ”Text line” da-
tatype provides two settings: default value and maximum length.

The content object
A content object is an instance of a content class. While the content class defines the type and
structure of the data, it is the content object that actually stores the data. Once a content class
is defined, many instances of that class can be created. For example, if a class for storing news
articles is created, several ”article” objects (each containing a different news story) can then be
instantiated. The following illustration summarizes and shows the relation between datatypes,
attributes, content classes and content objects.

Figure 2.6. Datatypes, attributes, a content class and objects

The illustration is a simplified version of the content model. It doesn’t show the exact struc-
ture of the objects, as the versioning and the translation layers have been left out. The follow-
ing section is a more detailed explanation of the object structure. The versioning and the trans-
lation layers will be explained in later sections.

Object structure

The following list shows the most important elements of a content object:
n Object ID
n Name

The content object

44 Chapter 2. Concepts and basics 45

n Type
n Owner
n Creation time
n Modification time
n Status
n Section ID
n Versions
n Current version

Object ID
Every object has a unique identification number. Object ID numbers are used by the system to
keep track of different objects. ID numbers are not recycled. In other words, if an object is de-
leted, the ID number of that object will not be reused when a new object is created.

Name
The Name of an object is a friendly name that appears in various lists throughout the Admin-
istration Interface. It helps the user identify different objects by their names instead of having
to deal with identification numbers. An object’s name is generated automatically by the system
when the object is published. The object name pattern definition of a class dictates how ob-
jects of that class should be named. This mechanism makes it possible to automatically gener-
ate names based on the object’s attributes. Since the object name is not used by the system, dif-
ferent objects can have the same name.
The name of the object will be updated every time the object is published. In other words, if at-
tributes specified in the object name pattern are changed, the object’s name will automatical-
ly also be changed. For example, when dealing with news articles, the title of the article would
most likely be used to generate the object names. When an article object is published, its name
will be a copy of the object’s title attribute. When the title is changed, the name of the object
will also be updated.

Type
The Type information indicates the content class of the object.

Owner
The Owner property identifies the user who created the object. This property is set by the sys-
tem the first time the object is published and never changes (even if the user is removed from
the system).

Creation time
The Published field contains a timestamp that shows the exact date and time the object was first
published. This information is set by the system and cannot be modified.

Modification time
The Modified field contains a timestamp that shows the exact date and time the object was last
modified. This information may only be set by the system and is updated every time the ob-
ject is published.

44 Chapter 2. Concepts and basics 45

Status

The Status f eld indicates the current state of the object. There are three possibilities:
n Draft
n Published
n Archived

When initially created, the object’s status is set to Draft. This status will remain until the object
is published. On publishing, the object’s status is set to Published. Once published, the object
cannot revert to draft status. When a published object is moved to the trash, the status will be set
to Archived. If a published object is removed from the trash (or removed without being put in
the trash first), it will be permanently deleted.

Section

The Section ID of an object denotes the section where the object belongs. Each object can be-
long to one section. By assigning different sections to objects, it is possible to have different
groups of objects. The section mechanism is explained later in this chapter.

Versions

The content of an object is stored in multiple Versions. A ”Version” can be thought of as a
timestamped collection of data (the object’s attributes) that belongs to a specific user. Every
time the contents of an object are edited, the modifications are stored in a new version of the ob-
ject. All previous versions of the object will remain untouched. This makes it possible to easily
revert unwanted or accidental changes. An object always has at least one version. Each version
is identified by a number which is automatically incremented for each new version created. The
structure and logic of the versioning mechanism is explained in the next section.

Current version

The Current version is a number that indicates the current published version of the object. As
described above, the contents of an object may exist in several versions. However, only one of
them can be the current version (also referred to as the published version). The current version
of the object is the version that will be displayed when the object is viewed.

Object versioning
eZ publish comes with a built-in versioning system that is implemented at the object level. This
mechanism makes it possible to have several versions of the contents (attributes) of an object.
It provides a generic, out-of-the-box version control framework that can be used with any kind
of content. Different versions are encapsulated by the object itself. The following illustration
shows a more detailed example of the object structure.

Every time an object is edited, a new version of the object’s contents will be created. It is al-
ways the new version that will be modified - the prior versions are unchanged. This is how eZ
publish keeps track of changes made by various users. An accidental or unwanted change can
be undone by simply reverting an object to its previous version.

Object versioning

46 Chapter 2. Concepts and basics 47

Figure 2.7. Example of a content object that consists of two versions

Version limitations
Since every edit procedure results in the creation of a new version (unlessthe new version is dis-
carded), the database can be quickly filled up by different versions of the same content. In or-
der to prevent this problem, the versioning system can be configured to store a limited number
of versions per object. It is possible to assign different version limitations for different object
types (that is, different content classes). The default limitation is 10, which means that eve-
ry object can have a maximum number of 10 versions of its content. If the maximum count is
reached, the oldest version will be automatically deleted and a free slot will therefore be availa-
ble for a new version. This is the default behavior. An alternate setting can be used to disallow
the creation of new versions until an existing version is manually deleted by a user.

Version structure
The following list shows the most important elements of a version:

n Version number
n Creation time

46 Chapter 2. Concepts and basics 47

n Modification time
n Creator
n Status
n Translations

Version number

Every version has a unique Version number. This number is used by the system to organize and
keep track of the different versions of an object. The version number is automatically incre-
mented for each version created inside an object.

Creation time

The Creation time contains a timestamp indicating the date and time when the version was cre-
ated. This information is set by the system and will remain the same regardless of what hap-
pens to the version.

Modification time

The Modification time contains a timestamp of the exact date and time that the version was last
modified. This information is updated by the system every time the version is stored and when
the version is finally published. When a version is published, the modification time of the ob-
ject itself will be updated. (It will be set to the same value as the modification time of the ver-
sion that was published.)

Creator

The version’s Creator contains a reference to the user who created the version. Although a con-
tent object can only belong to a single user (stored in the ”Owner” field), each version may be-
long to a different user. The creator reference is set by the system when the version is created.
It cannot be manipulated and will not change, even if the user who created the version is re-
moved from the system.

Status

The state of a version is indicated by its Status. There are five possibilities:
n Draft
n Published
n Pending
n Archived
n Rejected

A newly created version is a Draft. This status will remain until the version becomes Published.
Although an object can have many versions, there can only be one published version (the others
are usually drafts and archived versions). The published version can be considered the current
version and it is the one that is accessed when the object is viewed. A published version cannot
become a draft. However, it will become Archived as soon as another version is published. The
following illustration shows how the versioning system works.

Object versioning

48 Chapter 2. Concepts and basics 49

Figure 2.8. Object state overview

The illustration shows the most common states of a content object. When a new object is creat-
ed (step 1), eZ publish also creates a new draft version. Because the object has not yet been pub-
lished, its status is set to ”draft” and the current version is unknown. Storing the draft (steps 2a
and 2b) will not change the state of the object. The only thing that will happen is that the con-
tents of the draft will be stored in version 1.

If the draft (which is the only existing version) is discarded, the object is completely removed
from the system (step 2c). When the draft is published (step 2), the state of both the draft and
the object will be set to ”published”. In addition, the current version number will be set to 1,
which is the current published version of the object. After publication, the contents of the ob-
ject can be viewed by site visitors. A published object can be removed or deleted from the sys-
tem (step 3a). When removed, the object’s state will be set to ”archived” and it will be stored in

48 Chapter 2. Concepts and basics 49

the trash. The object can be recovered from the trash to its previous state. Among other things,
this involves the status field being set to ”published” again.

When a published object is edited (step 4), the current version (version 1 in this case) will remain
unchanged and a completely new version will be created. The contents of the new version (ver-
sion 2 in this case) will be a copy of the contents of the current version. Again, storing the draft
(steps 4b and 4c) will not change the state of the object. If the draft is discarded (step 4a), it will
be completely removed from the system and the object will be in the same state it was in before it
was edited. If the newly created and edited draft is published, it will become the current version
of the object and the previous version (version 1 in this case) will therefore be set to ”archived”.
Step 5a illustrates what would happen if the object (now with two versions) was removed.

The remaining states (”pending” and ”rejected”) are used by the eZ publish collaboration func-
tions. When a version is waiting to be approved by an editor, the status is set to ”pending”. If the
version is approved, it will be automatically published and thus the status will be set to ”pub-
lished”. If a pending version is rejected by the editor, the status will be set to ”rejected”.
A version can only be edited if it has a ”draft” status, and it can only be edited by the same
user who initially created it. In addition, rejected versions can also be edited. When a reject-
ed version is edited, it will become a draft. Published and archived versions cannot be edited.
However, it is possible to make copies of them. When a published or archived version is cop-
ied, the status of the copy is set to ”draft” and thus it becomes editable. When the new draft is
published, the system automatically sets the status of the previously published version to ”ar-
chived” and the new draft will become the published version.

Translations
The contents of each version is stored inside different translations. A translation is a represen-
tation of the information in a specific language. In other words, the translation layer allows a
version of the object’s contents to exist in different languages. A version always has at least one
translation of the content.

 Multiple languages
In addition to the versioning system, the content model of eZ publish provides a built-in mul-
tilanguage framework. This feature was enhanced in eZ publish 3.8. In previous versions, the
system kept all translations inside one version and would allow only one person to do modifica-
tions. This made it hard for several persons to edit the translations separately at the same time.
In 3.8, translations have become more self-contained and independent. They can be created and
edited separately by multiple users, meaning that multiple translators can work with the same
content. The following list shows the most important multilanguage changes in eZ publish 3.8:

n Users can only edit one version and translation at a time.
n Objects can be created in any language for any siteaccess. The objects do not have to

exist in the primary language before they can be translated using the additional lan-
guages.

n Objects can be translated to as many languages as necessary. Several translators can
work on the same object at the same time.

n Available translations can be controlled per siteaccess. Translations can be filtered.

Multiple languages

50 Chapter 2. Concepts and basics 51

 Implementation

Figure 2.9. Content object structure (with versions and translations)

50 Chapter 2. Concepts and basics 51

The multilanguage layer is implemented at the version level and thus it allows a version to ex-
ist in several languages. It provides a generic one-to-one translation mechanism that can be
used to translate any kind of content. A one-to-one translation solution makes it possible to rep-
resent the same content using multiple languages. For example, when the same news article is
available in English, Norwegian and Hungarian, we say that we have oneto-one translation of
the content.

The translation mechanism is completely independent of the datatypes. In other words, any
kind of content can be translated regardless of the datatypes used to express the content’s struc-
ture. Therefore, it is possible to start with one language and later add translations, thus extend-
ing the spectrum of the target audience. The following illustration shows an example of an ob-
ject seen by users. The object has three versions and each version exists in several languages.
A language in this case is referred to as a translation.

As the illustration indicates, each version can have a different set of translations. At a mini-
mum, a version always has one translation, which is the default translation. The default trans-
lation of a version cannot be removed. However, additional translations can be added and re-
moved while the version is being edited. A translation for a specific language can only be added
if it exists in the global content translation list (found in the Setup section of the Administration
Interface). This list keeps track of the languages that users are allowed to use when translating
content. For example, if the global translation list English, Norwegian and Hungarian, the sys-
tem will allow those three languages to be used when working with content. Note that in 3.8 an
object may be created using any language and thus the ”default translation” and the ”primary
language” terms have become obsolete. It is now possible to remove the translation which was
used when the object was created (because the main language of an object can be changed at
any time using the Administration Interface).

The global translation list can be changed at any time. A translation added to the global trans-
lation list will immediately become available for use. Removing a language from the global
translation list will (upon confirmation) also result in the removal of all translations that use that
language. Note that in version 3.8, the system will not allow you to remove a language if it is
the main (initial) language for some of the objects.

 Non-translatable attributes

The data structure defined by a class is built up of attributes, where each attribute is represent-
ed by a datatype. Among other things, an attribute of a class can be made translatable or not. If
an attribute is translatable, the system will allow the translation of the contents of the attribute
when an object of that class is edited. This is typically convenient when the attribute contains
text. For example, the written part of a news article can be translated into different languages.
However, some attributes are non-translatable by definition. This is typical for numbers, dates,
e-mail addresses, images without text, and so on. Such attributes can be made non-translata-
ble and their contents will therefore be copied from the default translation. The copied values
cannot be edited.

For example, say a user needs to store information about furniture in multiple languages. He
could build a furniture class using the following attributes: name, photo, description, width,
height, depth and weight. Allowing the translation of anything other than the description attribute

Multiple languages

52 Chapter 2. Concepts and basics 53

would be pointless since the values stored by the other attributes are the same regardless of the
language used to describe the furniture. In other words, the name, photo, width, height, depth and
weight would be the same in, for example, both English and Norwegian. Conversion between dif-
ferent measuring units could be done within the template used to display the information.

 Access control

It is possible to control whether or not a user (or a group of users) is able to translate content.
This policy can be controlled on a class, section and owner basis. In 3.8 there is now also a fine-
grained mechanism for controlling access to the different languages / translations. In addition,
it is possible to control access to the global translation list. This allows users other than the
site administrator to add and remove translations on a global basis.

The content node
When the system is in use, new content objects are created on the fly. For example, when a new
article is composed, a new article object is created. Obviously, the content objects can’t just
hover around in space, they have to be organized in some way. This is where the nodes and the
content node tree comes in. A content node is nothing more than an encapsulation of a content
object. In eZ publish, every object is usually represented by one or more nodes. The following
illustration shows a simplified example of a node and a corresponding object (which is refer-
enced by the node) as it would have been represented inside the system.

Figure 2.10. Object - node relation

The content node tree is built up of nodes. A node is simply the location of an object within the
tree structure. The tree is the actual mechanism used to hierarchically organize the objects that
are present in the system. The content node tree is explained in the next section.

Node structure

The following list shows the most important elements of a content node:
n Node ID
n Parent node ID
n Object ID
n Sort method
n Sort order
n Priority

52 Chapter 2. Concepts and basics 53

Node ID

Every node has a unique identification number. The Node ID numbers are used by the system
to organize and keep track of the nodes. These ID numbers are not recycled. In other words, if a
node is deleted, the ID number of that node will not be reused when a new node is created.

Parent node ID

The Parent node ID of a node reveals the node’s superior node in the tree.

Object ID

Every object that exists in the system has a unique identification number. The Object ID of a
node pinpoints the actual object which the node encapsulates.

Sort method

The Sort method of a node determines how the children of the node should be sorted. The fol-
lowing sorting methods are available:

Method ID Description
Class identifier 6 The nodes are sorted by the class identifiers of the objects.
Class name 7 The nodes are sorted by the class names of the objects.
Depth 5 The nodes are sorted by their depth within the tree. A node further down in

the tree has a higher level of depth. The root node has a depth of 1.
Modified 3 The nodes are sorted by the modification time of the objects.
Modified subnode 10 The nodes are sorted by the modification time of their children.
Name 9 The nodes are sorted by the names of the objects.
Path 1 The nodes are sorted by their path strings.
Priority 8 The nodes are sorted by their priority. Every node has a priority field that

can be set by the user. This solution allows the nodes to be sorted in a cus-
tom order. The priority field is described below.

Published 2 The nodes are sorted by the creation time of the object’s current / published
versions.

Section 4 The nodes are sorted by the section IDs of the objects.

Note that it is possible to combine the sorting methods in order to sort nodes in a more complex
way. However, since a node is incapable of ”remembering”a combination and you can only set
one method and one order for each node, complex sorting must be done via templates.

Sort order

The Sort order determines the order in which the children of the node should be sorted. There
are two possibilities:

n Descending (0 / FALSE)
n Ascending (1 / TRUE)

For example, if the sorting method is set to ”Name” and the sort method is set to ”Ascending”,
the underlying nodes will be alphabetically sorted from A to Z. If the sort method is set to ”De-
scending”, the underlying nodes will be sorted from Z to A.

The content node

54 Chapter 2. Concepts and basics 55

Priority

The Priority field allows a user to assign both positive and negative integer values to a node (zero
is also allowed). This field makes it possible to sort nodes in a custom way. If the sorting method of
a node is set to Priority, the children of that node will be sorted by their assigned integer values.

The content node tree

Figure 2.11. Objects, nodes and the content node tree

The following illustration shows the same node structure seen from the user’s perspective.

Figure 2.12. Content node tree

54 Chapter 2. Concepts and basics 55

The content node tree is a hierarchical organization of objects. Each leaf in the tree is a node
(also known as a location). Each node refers to one object. The usual case is that an object is
referenced by only one node. Because of the node-encapsulation of objects, any type of content
object can be placed anywhere in the tree. At a minimum, the tree consists of one node, called
the root node. The identification number of the root node is 1. The root node is a virtual node, it
does not encapsulate an actual object and it cannot be deleted. A node that is directly below the
root node is called a top-level node (the top-level nodes are described in the next section). The
depth and width of the tree is virtually unlimited. The following illustration shows a simplified
example of how objects are referenced by nodes which together make up a content node tree.

Multiple locations

Figure 2.13. Objects, nodes and the content node tree - multiple locations
The following illustration shows the same node structure seen from the user’s perspective.

Figure 2.14. Content node tree with multiple locations

The content node tree

56 Chapter 2. Concepts and basics 57

An object may be referenced by several nodes, which means that the same object can appear at dif-
ferent locations within the tree. This feature can for example be used to place a specific news arti-
cle at two locations: the front page and the archive. When an object has multiple nodes / locations,
only one node can be considered the main node of the object. The main node usually represents the
object’s original location in the tree. The other nodes can be thought of as additional nodes / loca-
tions. Among other things, the main node is used to avoid duplicate search hits, infinite recursive
loops, smart filtering, etc. The following illustration shows an example of a structure where an ob-
ject has multiple locations in the tree. The locations may have different sets of sub items.

Warning
A very common mistake when planning the structure of a site is thinking of multiple locations
as shortcuts or links on a filesystem. Unfortunately, this is not how the node tree works. When a
new location is added to an object, eZ publish will not go through and replicate the node struc-
ture below the object’s original location. For example, if a folder containing several subfolders
with articles, images, etc. is assigned a secondary location, the subfolders with articles, imag-
es, etc. will not be available below the new location of the folder.

Additional notes

Only published objects appear in a content node tree. A newly created object (with its status set
to ”draft”) will not be assigned a node until the object is published for the first time. An object
is considered to be deleted (status set to ”archived”) when all nodes referencing that object are
removed from the tree. A deleted object will appear in the system trash. It is important to under-
stand that the trash in eZ publish is a flat structure. This is different from what people are used
to from the trash implementation in modern operating systems. When an object is to be recov-
ered from the trash, it must be manually placed in the tree since the deleted object doesn’t con-
tain any information about its previous location. For example, if a folder containing some news
articles is deleted, both the folder and the articles it holds will appear on the same level with-
in the trash. Recovering the folder itself will not bring back the articles since the links between
the folder and the articles were lost when the nodes were deleted. (Note that this behavior was
changed in eZ publish 3.8. It is now possible to recover the deleted objects’ locations.)

 Top-level nodes
A typical eZ publish installation comes with the following set of top-level nodes:

n Content
n Media
n Users
n Setup

The top-level nodes cannot be deleted. However, they can be swapped with other nodes. The
swap function can be used to change the type of a top-level node. For example, the ”Content”
node references a folder object. By swapping it with another node which references a different
kind of object, it is possible to change the type of the top-level node itself. The following illus-
tration shows the virtual root node and the standard top-level nodes:

56 Chapter 2. Concepts and basics 57Top-level nodes

Figure 2.15. Top-level nodes

Content

The content of a site is placed under the Content node. This node is typically used for organ-
izing folders, articles, information pages, etc. and thus defines the content structure of the site.
A sitemap can be easily created by traversing the contents of this top-level node. The default
identification number of the Content node is 2. The contents of this node can be viewed by se-
lecting the ”Content structure” tab in the Administration Interface. By default, this node refer-
ences a Folder object.

Media

The Media node is typically used for storing and organizing information that is frequently used
by the nodes located below the Content node. It usually contains images, animations, docu-
ments and other files. For example, it can be used to create an image repository containing im-
ages used in different news articles. The default identification number of the Media node is 43.
The contents of this node can be viewed by selecting the ”Media library” tab in the Administra-
tion Interface. By default, this node references a Folder object.

Users

The built-in multi-user solution makes use of the native content structure of eZ publish. Us-
ers are simply instances of classes containing the ”User account” datatype. The user nodes are
organized within User group nodes below the Users top-level node. In other words, this node
contains the actual user accounts and groups. The default identification number of the Users
node is 5. The contents of this node can be viewed by selecting the ”User accounts” tab in the
Administration Interface. By default, this node references a User group object.

Setup

The Setup node contains miscellaneous nodes related to configuration and is used internally.
The default identification number of the Setup node is 48. By default, this node references a
Folder object.

58 Chapter 2. Concepts and basics 59

Node visibility
Since publishing means adding an object (by the way of a node) to the content tree, unpublish-
ing would imply the removal of the object from the tree. Once an object is published, it cannot
be unpublished because eZ publish does not provide such a feature. Instead, the system pro-
vides a hiding mechanism which can be used to change the visibility of nodes. The ”hide” fea-
ture makes it possible to prevent the system from displaying published objects. This is achieved
by denying access to the nodes. A single node or a subtree of nodes can be hidden by either us-
ers or the system. The visibility status of a node may be one of the following:

n Visible
n Hidden
n Hidden by superior

All nodes are visible by default and thus the objects they reference can be accessed. User can
hide or reveal nodes using the Administration Interface. Once a node is hidden, all its descend-
ants will automatically be marked ”Hidden by superior,” and therefore the descendants will al-
so become hidden. A node cannot become visible if its parent is hidden.

A hidden node will not be available unless the ShowHiddenNodes directive within the
[SiteAccessSettings] block of a configuration override for site.ini is set to true.
The most common way to use this setting is to allow only the Administration Interface to show
hidden nodes. This means that the hidden nodes will not be visible on the actual site.

Implementation

Each node has two flags: ”H” and ”X”. While ”H” means ”hidden”, ”X” means ”invisible”. The
hidden flag reveals whether the node has been hidden by a user. A raised invisibility flag means
that the node is invisible either because it was hidden by a user or by the system. Together, the
flags represent the three visibility states that were described above:

H X Status
- - The node is visible.
1 1 The node is invisible. It was hidden by a user.
- 1 The node is invisible. It was hidden by the system because its ancestor is hid-

den / invisible.

If a user tries to hide an already-invisible node, the node’s hidden flag will be set in addition to
the invisible flag. If a node is hidden and its parent becomes visible, the node will remain hid-
den while its descendants remain invisible. The following illustrations show how the node hid-
ing algorithm works.

Case 1: Hiding a visible node

The next illustration shows what happens when a visible node is hidden by a user. The node will
be marked hidden. Underlying nodes will be marked invisible (hidden by superior). The visibil-
ity status of underlying nodes already marked hidden or invisible will not be changed.

58 Chapter 2. Concepts and basics 59

Figure 2.16. Hiding a visible node

Case 2: Hiding an invisible node
The following illustration shows what happens when an invisible node (hidden by superior) is
explicitly hidden by a user. The node will be marked as hidden. Since the underlying nodes are
already either hidden or invisible, their visibility status will not be changed.

Figure 2.17. Hiding an invisible node

Case 3: Revealing a node with a visible ancestor
The next illustration shows what happens when a user reveals a node that has a visible ancestor.
Underlying invisible nodes will become visible. An underlying node that was explicitly hidden
by a user will remain hidden (and its children will remain invisible).

Node visibility

60 Chapter 2. Concepts and basics 61

Figure 2.18. Revealing a node with an invisible ancestor

Case 4: Revealing a node with an invisible ancestor

The following illustration shows what happens when a user reveals a node that has an invisible an-
cestor. Since the target node is revealed in a subtree that is currently invisible (because a node fur-
ther up in the hierarchy has been explicitly hidden), the node will not become visible. Instead, it
will be marked as invisible and will become visible when the hidden superior node is revealed.

Figure 2.19. Revealing a node with an invisible ancestor

60 Chapter 2. Concepts and basics 61

Sections
A section ID is a number that can be assigned to an object. The section ID of an object denotes
which section the object belongs to. Each object can belong to one section. By assigning differ-
ent sections to objects, it is possible to have different groups of objects. Although the section-
ing mechanism is implemented at the object level, it is likely to be used in conjunction with the
content node tree. This is why the Administration Interface makes it possible to manage sec-
tions at the node level. Using sections makes it possible to:

n Segment the node tree into different subtrees
n Set up custom template override rules
n Limit and control access to content
n Assign discount rules to a group of products

A default eZ publish installation comes with the following sections:

ID Name Description
1 Standard The Standard section is the default section. The top-level Content node makes use of

this section.
2 Users The Users section is dedicated for user accounts and user groups. The top-level Users

node makes use of this section.
3 Media The Media section is used by the top-level Media node.
4 Setup The Setup section is used by the top-level Setup node.

Section definitions can be added, modified and removed using the Administration Interface.
The following illustration shows an example of how this feature can be used to segment the
content node tree.

Figure 2.20. Example of sections

Sections

62 Chapter 2. Concepts and basics 63

Behavior

When a new object is created, its section ID will be set to the default section (which is usually
the ”Standard” section). When the object is published, it will automatically inherit the section
assigned to the object encapsulated by its parent node. For example, if an object is created in
a folder that belongs to section 13, the section ID of the newly created object will be set to 13.
If an object has multiple node assignments, then the section ID of the object referenced by the
parent of the main node will be used. If the main node of an object with multiple node assign-
ments is changed, the section ID of that object will be updated.

The Administration Interface makes it possible to assign sections to objects using the node tree.
When a section is assigned to a node, the section ID of the object referenced by that node will
be updated. In addition, the section assignment of all subsequent children of that node will also
be changed. For example, if the section ID of a folder containing news articles is changed, then
the section ID of the articles in that folder will also be changed.

The removal of sections may corrupt permission settings, template output and other things in
the system. In other words, a section should only be removed if it is completely unused. When
a section is removed, it is only the section definition itself that will be removed. Other referenc-
es to the section will remain and thus the system will most likely be in an inconsistent state.

The section ID numbers are not recycled. If a section is removed, the ID number of that section
will not be reused when a new section is created.

URL storage
Every address that is input as a link into an attribute using the XML block and URL datatypes
is stored in a separate part of the database. Data stored using these datatypes only contains ref-
erences to entries in the separate URL table. This feature makes it possible to inspect and ed-
it the published URLs without having to interact with the content objects. The addresses in the
URL table can be checked by running the linkcheck.php script (which is also executed by
the cronjob script) that comes with eZ publish. This script will check whether the links in the ta-
ble actually work by accessing them one by one. If the target server of a URL returns an invalid
response (”404 Page not found”, ”500 Internal Server Error”, ”403 Access Denied”, etc.) or if
there is no response, the URL will be marked invalid. Invalid URLs and the objects which use
them can be easily filtered out and edited using the ”URL management” section of the Admin-
istration Interface. An entry in the URL table consists of the following data:

n ID
n Address
n Creation time
n Modification time
n Last checked
n Status

Every URL has a unique identification number (ID). The address contains the actual link. The
creation time is the exact date / time when the object containing that URL was published. The
modification time is updated every time the URL is changed using the ”URL management” part

62 Chapter 2. Concepts and basics 63

of the Administration Interface (and not when the object containing that URL is edited) When-
ever a URL is checked by the script, the ”last checked” field will be updated. The status of a
URL can be either ”valid” or ”invalid”. By default, all URLs are valid. When the cronjob or
the link-check script is running, it will automatically update the status of the URLs. If a broken
link is found, its status will be set to ”invalid”. Whenever an already existing URL is stored, the
system will simply reuse the existing entry in the table.

Tip
The link check script must be able to contact the outside world through port 80. In other words, the
firewall must be opened for outgoing HTTP traffic from the web server that is running eZ publish.

 Information collection
The information collection feature makes it possible to gather user input when a node referenc-
ing an information collector object is viewed. It is typically useful when it comes to the crea-
tion of feedback forms, polls, etc.

An object can collect information if at least one of its class attributes is marked as an informa-
tion collector. When the object is viewed, each collector attribute will be displayed using the
chosen datatype’s data collector template. Instead of just outputting the attributes’ contents, the
collector templates provide interfaces for data input. The input interface generated depends on
the datatype which represents the attribute. The following table shows the datatypes capable of
collecting information. (Note that in version 3.8 some of the other datatypes have been upgrad-
ed to support information collection.)

Datatype Input interface Input validation
Checkbox Checkbox. No.
E-Mail Single line of text. Yes.
Option Radio buttons or a dropdown menu. No.
Text
block

Multiple lines of unformatted text. No.

Text line Single line of unformatted text. No.

(Note that information collection support has been added to even more datatypes in eZ pub-
lish 3.8.)

The input interfaces are defined within an HTML form that posts the data to ”/content/
action” (the ”action” view of the ”content” module), using a submit button named
”ActionCollectInformation”. The IDs of the node and the object must be provided
as hidden variables. The submitted data will be stored in a dedicated part of the database, sepa-
rate from but related to the object itself. In addition, whenever the object collects any data, the
information can be sent to a specified e-mail address.

Tip
The Collected information section within the Setup section of the Administration Interface
can be used to view and delete information that was collected through content objects.

Information collection

64 Chapter 2. Concepts and basics 65

Configuration
This section explains the configuration model of eZ publish. The default configuration files end
with an .ini extension and are located in the settings/ directory. Each file controls the be-
havior of a specific part of the system. For example, the content.ini file controls the be-
havior of the content engine, the webdav.ini file controls the behavior of the Web-DAV fea-
ture, and so on. The main configuration file is called site.ini. Among other things, it tells
eZ publish which database, design, etc. should be used. The default configuration files con-
tain all the possible directives (with default settings) along with brief explanations. These files
should only be used for reference; they should never be modified. (The ”Configuration files”
section of the online reference documentation contains a comprehensive explanation of the dif-
ferent configuration files and their settings.)

File structure
An eZ publish configuration file is divided into blocks. Each block contains a collection of set-
tings. The following example shows a part of the main (site.ini) configuration file.

...
This line contains a comment.
[DatabaseSettings]
Server=localhost
User=allman
Password=DeLorean
Socket=disabled
SQLOutput=enabled

This line contains another comment.
[ExtensionSettings]
ActiveExtensions[]=ezdhtml
ActiveExtensions[]=ezpaypal
...

The example above shows two blocks: DatabaseSettings and ExtensionSettings.
Each block has several settings which control the behavior of the system. A setting can usually
be set to enabled or disabled, a string of text, or an array of strings. If the name of a setting ends
with a pair of square brackets, it means that the setting accepts an array of values. In the exam-
ple above, the ActiveExtensions setting tells eZ publish to use two different extensions:
ezdhtml and paypal. Lines starting with a hash (”#”) are treated as comments.

 Configuration overrides
As pointed out earlier, the default configuration files should never be modified because they
will most likely be overwritten by a new set of files during an upgrade. Making a backup will
not be sufficient because the configuration settings change over time. For example, the current
version of the files will not contain settings that are added in the next release. Because of these
issues, custom configuration settings must be placed elsewhere. Global configuration overrides
can be placed in the settings/override/ directory. The settings of the configuration files

64 Chapter 2. Concepts and basics 65

located in this directory will override all other settings. The name of the configuration files in
the override directory must end with one of the following extensions:

n .ini.append

n .ini.append.php

If override configuration files exist with both .ini.append and .ini.append.php ex-
tensions, eZ publish will process the one that ends with .php. Because of possible security
issues, the latter (.ini.append.php) should be used; especially if eZ publish is running in
a non-virtual host environment. The .php extension will trick the web server into handling the
configuration file as a PHP script. If someone attempts to read it using a browser, the server will
not display the contents. Instead, it will attempt to process it as PHP code. The result will be no
output. This method makes it more difficult for hackers to get access to the configuration set-
tings (for example the database password) when eZ publish is running in a non-protected (usu-
ally non-virtual host) environment. In order for this to work, the contents of the configuration
file must be enclosed by a pair of PHP comment markers: /* and */. The following example
shows how an override (for example test.ini.append.php) should be configured

<?php /* #?ini charset=”iso-8859-1”?

These are only example settings
[ExampleSettings]
ExampleSettingOne=enabled
ExampleSettingTwo=disabled
...

*/ ?>

The charset directive reveals the character set used to construct the configuration file (usual-
ly ISO-8859-1).

Site management
A single eZ publish installation is capable of hosting multiple sites by making use of the siteac-
cess system. This system makes it possible to use different configuration settings based on a
set of rules. The rules control the group of settings that should be used in a particular case. The
siteaccess rules must be specified in the global override for the site.ini configuration file
(settings/override/site.ini.append.php).

Siteaccess
A collection of configuration settings is called a siteaccess. When a siteaccess is in use, the default
configuration settings will be overridden by the settings defined for the siteaccess. Among other
things, a siteaccess dictates which database, design and var directory should be used. (These com-
ponents are usually referred to as ”resources”.) By making use of different siteaccesses, it is possi-
ble to combine different content and designs. A typical eZ publish site consists of two siteaccess-
es: a public interface for visitors and a protected interface for administrators. Both siteaccesses
use the same content (same database and same var/ directory) but use different designs. While
the administration siteaccess would most likely use the built-in administration design, the public
siteaccess would probably use a custom design. The following illustration shows this scenario.

Site management

66 Chapter 2. Concepts and basics 67

Figure 2.21. Example of a setup with two siteaccesses

Again, a siteaccess is a set of configuration files that override the default settings. A single eZ
publish installation can host a virtually unlimited number of sites by using different siteaccess-
es. The configuration settings for a siteaccess are located inside a dedicated subdirectory within
the settings/ siteaccess/ directory. The name of the subdirectory is the actual name
of the siteaccess. The following illustration shows a setup with two siteaccesses: ”admin” and
”public”.

Figure 2.22. Siteaccess directory example

When a siteaccess is in use, eZ publish reads the configuration files using the following se-
quence:

 1. Default configuration settings (settings/*.ini)
 2. Siteaccess settings (settings/siteaccess/[name_of_siteaccess]/

*.ini.append.php)
 3. Global overrides (settings/override/*.ini.append.php)

66 Chapter 2. Concepts and basics 67

In other words, eZ publish will first read the default configuration settings. Next, it will deter-
mine which siteaccess to use based on the rules defined in the global override for site.ini
(settings/override/site.ini.append.php). When it knows which siteaccess to
use, it will go to the directory for that siteaccess and read the configuration files. The settings
of the siteaccess will override the default configuration settings. For example, if the siteaccess
uses a database called ”Amiga500”, the system will see this and automatically use the specified
database when an incoming request is processed. Finally, eZ publish reads the configuration
files in the global override directory. The settings in the global override directory will override
all other settings. In other words, if a database called ”CD32” is specified in the global override
for site.ini then eZ publish will attempt to use that database regardless of what is specified
in the siteaccess settings (in this case, the ”CD32” database would be used for all incoming re-
quests). If a setting is not overridden by either the siteaccess or from within a global override
then the default setting will be used. The default settings are set in the *.ini files located in
the settings/ directory.

 Access methods
Based on a set of rules, eZ publish determines which siteaccess it should use every time it proc-
esses an incoming request. The rules must be set up in the global override for the site.ini
configuration file: settings/override/site.ini.append.php. The behavior of the
siteaccess system is controlled by the MatchOrder setting within the [SiteAccessSet-
tings] block. This setting controls the way eZ publish interprets incoming requests. There
are three possible methods:

n URI
n Host
n Port

The following text gives a brief explanation of the different access methods. Note that the ac-
cess methods can be combined by providing the desired methods and separating them using
semicolons in the global configuration override for site.ini.

 URI

This is the default setting for the MatchOrder directive. When the URI access method is used,
the name of the target siteaccess will be the first parameter that comes after the index.php
part of the requested URL. For example, the following URL will tell eZ publish to use the ”ad-
min” siteaccess: http://www.example.com/index.php/admin. If another siteaccess
with the name ”public” exists, then it would be possible to reach it by pointing the browser to the
following address: http://www.example.com/index.php/public. If the last part of
the URL is omitted then the default siteaccess will be used. The default siteaccess is defined by
the DefaultAccess setting within the [SiteSettings] block. The following example
shows how to set up settings/override/site.ini.append.php in order to make
eZ publish use the URI access method and to use a siteaccess called ”public” by default:

...
[SiteSettings]
DefaultAccess=public

Access methods

68 Chapter 2. Concepts and basics 69

[SiteAccessSettings]
MatchOrder=uri
...

The URI access method is typically useful for testing and demonstration purposes. It doesn’t
require any configuration of the web server and the DNS server.

Host

The host access method makes it possible to map different host / domain combinations to dif-
ferent siteaccesses. This access method requires configuration outside eZ publish. First of all,
the DNS server must be configured to resolve the desired host / domain combinations to the IP
address of the web server. Secondly, the web server must be configured to trigger a virtual host
configuration (unless eZ publish is located in the main document root). Once the DNS serv-
er and the web server are configured properly, eZ publish can be set up to use different siteac-
cesses based on the host / domain combinations of the incoming requests. The following ex-
ample shows how to set up settings/override/site.ini.append.php in order to
make eZ publish use the host access method. It also shows the basic usage of the host match-
ing mechanism.

...
[SiteAccessSettings]
MatchOrder=host
HostMatchType=map
HostMatchMapItems[]=www.example.com;public
HostMatchMapItems[]=admin.example.com;admin
...

The example above tells eZ publish to use the ”public” siteaccess if the request-
ed URL starts with ”www.example.com”. In other words, the configuration files in
settings/siteaccess/public/ will be used. If the requested URL starts with
”admin.example.com”, then the admin siteaccess will be used. The example above dem-
onstrates only a fragment of the host matching capabilities of eZ publish. Refer to the online
documentation for a full explanation of the HostMatchType directive.

Port

The port access method makes it possible to map different ports to different siteaccesses. This
access method requires configuration outside eZ publish. The web server must be configured to
listen to the desired ports (by default, a web server typically listens for requests on port 80, the
standard port for HTTP traffic). In addition, the firewall will probably have to be opened so that
the incoming traffic actually reaches the web server. The following example shows how to con-
figure settings/override/site.ini.append.php in order to make eZ publish use
the port access method. It also shows how to map different ports to different siteaccesses.

...
[SiteAccessSettings]
MatchOrder=port

68 Chapter 2. Concepts and basics 69

[PortAccessSettings]
80=public
81=admin
...

The example above tells eZ publish to use the ”public” siteaccess if the requested URL is sent
to the web server using port 80. In other words, the configuration files inside settings/
siteaccess/public/ will be used. If the URL is requested on port 81 (usually by append-
ing a :81 to the URL, for example ”http://www.example.com:81”), the admin siteac-
cess will be used.

 Modules and views
The modules provide HTTP interfaces that can be used for web-based interaction with eZ publish.
While some modules offer an interface to kernel functionality, others are more or less independent
of the kernel. The system comes with a collection of modules that cover the needs of typical eve-
ryday tasks. For example, the content module provides an interface that makes it possible to
use a web browser to manage content. It is possible to extend the system by creating custom mod-
ules for special needs. Custom modules have to be programmed in PHP. The following table gives
an overview of some of the most commonly used modules that come with eZ publish.

Module Description
Content The Content module provides an interface to the content engine in the eZ publish ker-

nel. This module makes it possible to display, edit, search and translate the contents of ob-
jects, manage the node tree and so on.

User The User module provides an interface to the user management system in the kernel.
This module makes it possible to log users in and out of the system. In addition, it provides
functionality related to user registration, user activation, password changing, etc.

Role The Role module provides an interface to the access control system in the kernel. This
module makes it possible to create, modify and delete roles and policies. In addition, it
provides functionality for assigning roles to different users and user groups.

 Refer to the Modules section of the appendix for a comprehensive list of all the built-in modules.

Module execution
Every time an eZ publish site is accessed using a web browser, the client application indirect-
ly interacts with one of the modules present in the system. The requested URL tells eZ pub-
lish which module it should execute in order to process the request. In particular, the first part
of the URL reveals the name of the module. This is usually the part that comes directly after
index.php (unless the URI access method is used). The following example shows a typical
eZ publish URL:
http://www.example.com/index.php/content/edit/13/3

This URL’s request is directed at the content module. Another typical example of an eZ pub-
lish URL is:

http://www.example.com/index.php/user/login

Modules and views

70 Chapter 2. Concepts and basics 71

By looking at the URL, we see that eZ publish will attempt to execute the user module when
processing this request. Obviously, some additional information is also specified in the URLs.
In the first example, the name of the module is followed by ”/edit/13/3”. In the second
example, the name of the module is followed by ”/login”. These additional strings control
the behavior of the requested module and are explained below.

Module views
A module consists of a set of views. A view can be thought of as an interface to a module. By us-
ing views, it is possible to reach various functions that a module provides. For example, among
other things, the content module provides views for displaying, editing, searching and trans-
lating the contents of objects. The name of the view to be accessed appears after the name of the
module (separated by a slash) in the URL. In the first example above, eZ publish is instructed
to access the edit view of the content module. In the second example, eZ publish is instruct-
ed to access the login view of the user module.

When a view is called, eZ publish starts up the program code associated with that view. Upon
completion, the view returns a result to the module, which in turn returns it to the rest of the sys-
tem. The result is put inside a template variable called $module_result.content which
is available from the main template (the ”pagelayout”). Refer to the Template generation sec-
tion of the Templates chapter for more information.

View parameters
Some views can have one or more parameters. A view parameter makes it possible to pass in-
formation to the view itself and thus allows the view to be controlled from within the request-
ed URL. The view parameters are appended after the name of the view in the URL. In the first
example above, the following parameters are passed to the view: ”13” and ”3”. These param-
eters will instruct the edit view of the content module to provide an interface for editing
the third version of the thirteenth content object in the system. The URL given in the second
example does not make use of any view parameters. The view mechanism supports two types
of parameters:

n Ordered parameters
n Unordered parameters

Ordered parameters must be separated by slashes and must come after the name of the view. In
addition, they have to be provided in the order specified in the module’s definition. For exam-
ple, if the view parameters in the first example get mixed up, eZ publish will attempt to edit the
thirteenth version of the third object (instead of the third version of the thirteenth object).

As the name suggests, unordered parameters can be provided in an arbitrary order. If the view
supports ordered parameters, the unordered parameters must come after the ordered parameters.
If the view doesn’t support ordered parameters, the unordered parameters will come directly af-
ter the name of the view in the URL. The unordered parameters must be provided in pairs. A
pair consists of the parameters’ names and values separated by slashes. The following example
shows an imaginary eZ publish URL with unordered parameters passed to the requested view:
http://www.example.com/index.php/
 video/dvd/button/play

70 Chapter 2. Concepts and basics 71

The address in the example above tells eZ publish to run the imaginary video module and ex-
ecute the dvd view. A variable called button will be created and made available for the view
code. The value of the variable will be set to play. It is up to the PHP code of the view to dis-
cover this variable and to carry out the necessary sequence of actions.

 POST variables

Some views make use of parameters that are submitted using forms through the HTTP POST
method. For example, the action view of the content module makes extensive use of
POST variables.

The default request
In order to produce proper output, eZ publish must know which module it should run and which
view should be executed. In other words, every URL has to contain at least the name of an ex-
isting module and a view. If an incomplete or mistyped URL is provided, eZ publish will dis-
play an error page revealing what’s wrong (missing / mistyped module or view). If the request-
ed URL doesn’t contain anything after index.php (except a slash), the default module / view
combination will be executed. The default module / view combination can be configured us-
ing the IndexPage setting under [SiteSettings] in an override for site.ini. The
default value is ”/content/view/full/2”. It instructs eZ publish to show a full view of
node 2, the content top-level node. In other words, if the following request is made:

http://www.example.com/index.php

...eZ publish will behave as if the following URL was requested:

http://www.example.com/index.php/
 content/view/full/2

No redirection or page reload will be made, which means that the address field of the browser
will remain unchanged.

URL translation
This section explains the different URL types which can be used with eZ publish, and how the
URL translator works. By default, eZ publish is capable of handling two types of URLs:

n System URLs
n Virtual URLs

System URLs
A system URL tells eZ publish which module should be run and which view should be execut-
ed. It may contain additional parameters which are passed to the target view. Every system URL
follows the same structure and can be broken down into the following components:

n Module name
n View name
n View parameters

URL translation

72 Chapter 2. Concepts and basics 73

The view parameters are optional and may consist of ordered and / or unordered values. A com-
prehensive description of view parameters can be found in the Modules and views section. The
following model shows the required sequence of the different URL components:

http://www.example.com/index.php/module/view/
ordered_view_parameters/unordered_view_parameters

URL component Description
Module The name of the module that should be run.
View The name of the view that should be executed.
Ordered view parameters Some views make use of ordered parameters.
Unordered view parameters Some views make use of unordered parameters.

The following example shows a typical system URL:

http://www.example.com/index.php/content/edit/13/3

By looking at the URL, we can tell that it will instruct eZ publish to run the content mod-
ule and execute the edit view. The values ”13” and ”3” are parameters that will be passed
to the view itself. Note that the exact style of the URLs depend on the access method used and
the way the web server is configured. For example, the web server may be configured to hide
the index.php part of the address.

Virtual URLs
A virtual URL (also known as URL alias or nice URL) is an alias for an existing system URL.
Virtual URLs are easier to remember and sometimes shorter than system URLs. While system
URLs reveal a great deal about what eZ publish is instructed to do, virtual URLs do not reveal
system-specific information. In other words, virtual URLs cannot be broken down to compo-
nents in the same way as system URLs. The following example shows a typical virtual URL:

http://www.example.com/company/about

There are two types of virtual URLs: ones that are automatically generated and maintained
by eZ publish and ones that are created and maintained by the site administrator. However, all
virtual URLs are treated equally and handled in the same way. The system keeps track of the
URLs in a table which consists of two columns: virtual / source address and system / destina-
tion address. An entry in the URL table might look something like:

Virtual / source address System / destination address
company/about content/view/full/1885

An example of a URL using the virtual address similar to that shown in the table above:

http://www.example.com/company/about

According to the table above, the virtual URL will be translated internally to the following sys-
tem URL:

http://www.example.com/content/view/full/1885

72 Chapter 2. Concepts and basics 73

Both URLs are valid and will produce the same output, in this case a full view of node number
1885. When the virtual URL is used, the redirection will be done internally, and thus the user
will reach the target node without any glitches like redirections, page reloads, etc.

Automated virtual URL generation and maintenance

Every time an object is published, the system will automatically generate a virtual URL for
each of the object’s node assignments. The generated URL for a node is based on the node’s lo-
cation in the tree and the name of the object the node encapsulates. The virtual URLs generated
for the nodes are handled completely by the system and cannot be changed using the Admin-
istration Interface. The following illustration shows an example of objects, nodes and a corre-
sponding URL table.

Figure 2.23. Objects, nodes and the URL table

The example above demonstrates how virtual URLs are generated. For each node, the system
generates a path of strings separated by slashes. The strings in the path are the names of the ob-
jects referenced by the nodes up to and including the target node. Special symbols are converted
to underscores and special characters are converted using the built-in transliteration feature. For
example, the Norwegian characters ”æ”, ”ø” and ”å” are converted to ”ae”, ”oe” and ”aa”. If the
system is about to generate a virtual URL that already exists, it will simply append an underscore
and a number at the end of the newly generated address to eliminate the risk of duplicate URLs.

When the name of an object is changed, the system will change the virtual URLs for the in-
volved nodes. In addition, an internal redirection will be created, which will ensure that the old
URL still works. The old virtual URL will keep working until the same URL needs to be gen-
erated for a node. In this case, the old virtual URL will be deleted.

Virtual URLs

74 Chapter 2. Concepts and basics 75

Manual virtual URLs and translations

It is possible to manually add, edit and remove virtual URLs using the Administration Interface.
The URL translator mechanism makes it possible to add three types of translations:

n New virtual URL for an existing system URL
n Secondary / alternative virtual URL for an existing virtual URL
n Wildcard-based URL forwarding

URL handling
When eZ publish receives a request, it looks at the URL sent by the web browser. The address
is stripped of unnecessary parts such as the host and domain name, etc. If the address exists as
a virtual URL in the table, eZ publish will attempt to process the corresponding system URL. If
the address doesn’t exist, eZ publish will attempt to interpret it as a system URL.

Designs
This section explains the concept of designs and how eZ publish handles different designs. As
mentioned in the beginning of this chapter, design refers to the way content is marked up and
visually presented. When talking about a design, we’re talking about the things that make up a
web interface: HTML, style sheets, images, etc. that are not part of the content. All files related
to appearance reside in the design/ directory. An eZ publish installation is capable of han-
dling a virtually unlimited number of designs. Each design has its own dedicated subdirectory
within the main design directory. The name of the subdirectory also functions as the name of
the design. A typical eZ publish design consists of the following components:

n CSS files
n Image files
n Font files
n Template files

The siteaccess dictates which design should be used. By making use of different siteaccesses,
it is possible to combine different content and designs. A typical eZ publish site consists of two
siteaccesses: a public interface for visitors and a restricted interface for administrators. Both
siteaccesses use the same content (database and var/ directory) but they use different designs.
The administration siteaccess would most likely use the built-in administration design. The
public siteaccess would use a custom design.

Default designs
An eZ publish distribution comes with at least two default designs:

n admin
n standard

The admin/ directory contains all design-related files that make up the built-in Administration
Interface. The standard/ directory contains a set of standard / default design-related files
such as the default / standard templates, images, etc. The contents of these directories should

74 Chapter 2. Concepts and basics 75

not be altered. Instead, custom designs should be used when desired. A custom design can be
added by creating a new subdirectory within the main design/ directory.

Design directory structure
All files belonging to a specific design are located inside the directory which corresponds to
that design. The name of the directory functions as the name of the design itself. An eZ publish
design directory typically contains the following subdirectories:

Subdirectory Description

fonts/ Font files used by the texttoimage template operator which is capable of dis-
playing text using truetype fonts.

images/ Non-content specific images such as banners, logos, graphical layout elements,
etc.

override/ Custom templates that will be used instead of the default / standard templates.
These files will be triggered by template override rules that are specified in a con-
figuration override for override.ini. Refer to The template override system
section of the Templates chapter for more information about this feature.

stylesheets/ CSS files.

templates/ Main template(s), for example the pagelayout, header, footer, etc. and custom tem-
plates that will be used instead of the standard / default templates.

Design combinations
A siteaccess may make use of several designs. This means that the final result generated by eZ
publish can be a combination of files originating from various designs. A siteaccess is capable
of using a combination of the following:

n One main design
n One or more additional designs
n One standard design

A siteaccess should always have at least a main design and a standard design. While the main
design can be set to anything, the standard design should not be modified. The default config-
uration is to use the built-in standard design. It ensures that eZ publish always finds the neces-
sary templates, ensuring that any kind of content can be rendered without problems. A more in-
depth explanation is presented below.

Automatic fallback

If eZ publish is unable to find a design-specific file (a stylesheet, a template, an image, etc.)
within the main design, it will automatically attempt to locate the file elsewhere. The system
will sequentially go through all the additional designs (if specified), looking for the request-
ed file. At last, if the requested file still hasn’t been found, eZ publish will attempt to locate the
missing file within the standard design. The following diagram illustrates this functionality.

Design directory structure

76 Chapter 2. Concepts and basics 77

Figure 2.24. The design fallback mechanism

Configuration

The designs that will be used must be specified in the [DesignSettings] block within an
override for the site.ini configuration file. The following directives can be used:

n SiteDesign
n AdditionalSiteDesignList
n StandardDesign

The SiteDesign directive specifies the main design. The AdditionalSiteDesignList directive
specifies an array of additional site designs. The StandardDesign directive specifies the stand-
ard design. Even though it is possible to change the standard fallback design, it is not recom-
mended. The StandardDesign directive should always be set to the built-in standard de-
sign. This is already defined in the default site.ini file, and there is no need to set the stand-
ard design from within an override. If there is a need for a custom fallback design, it should
be specified using the AdditionalSiteDesignList directive. The automatic fallback
mechanism makes the reuse and combination of designs simple.

76 Chapter 2. Concepts and basics 77

Example

The following example shows how to configure the following design settings in an override for
the site.ini configuration file:

n ”my_design” is the main design
n ”fallback_one” is the first additional design
n ”fallback_two” is the second additional design
n ”standard” is the standard fallback design

...
[DesignSettings]
SiteDesign=my_design
AdditionalSiteDesignList[]=fallback_one
AdditionalSiteDesignList[]=fallback_two
StandardDesign=standard
...

In this example, if eZ publish is unable to find the requested file within the main ”my_design”,
it will automatically fallback to the additional designs. At first, the system will look for the re-
quested file within the ”fallback_one” design directory. If the requested file is not found, the
system will look in the ”fallback_two” design directory. If the file still hasn’t been found, the
system will attempt to locate it within the ”standard” design directory. The standard directory
will most likely contain the requested file (unless a custom template is requested).

 Access control
This section explains how eZ publish manages user accounts and access permissions. The sys-
tem comes with a built-in access control mechanism that can be used to limit access to content
or to certain functionality. The access control system is based on the following elements:

n User
n User group
n Policy
n Role

A user corresponds to a valid user account on the system. A user group consists of users and
other user groups. A policy is a rule that grants access to content or to a certain system function.
(For example, a policy may grant read access to a collection of nodes.) A role is a named col-
lection of policies. A role can be assigned to users and user groups. The following sections ex-
plain each of these elements in depth.

Access control

78 Chapter 2. Concepts and basics 79

The following illustration shows the relationships between the elements in the list above.

Figure 2.25. Users, groups, policies and roles

User
A user account is represented by a content object (with at least one node assignment) that con-
tains information about a specific user. The default User class allows the storage of the fol-
lowing elements: first name, last name, email, username and password. The last three elements
(e-mail, username and password) are provided by the ”User account” datatype. This is a special
datatype which plugs more deeply into the system. Instances of any content class containing
the ”User account” datatype will function as valid users on the system. In other words, if there
is a need to store additional information about users, it is possible to either modify the default
user class or to create a custom class that contains this datatype. A user account can be enabled
or disabled from within the Administration Interface. When disabled, the account will continue
to exist, but the user will not be able to log in until the account is enabled.

78 Chapter 2. Concepts and basics 79

Note that the default configuration does not allow different users to be registered with the same
e-mail address. This is a built-in precaution which can be disabled by setting the RequireU-
niqueEmail directive within the [UserSettings] block of a configuration override for
site.ini to FALSE.

 User ID

Every user has a unique identification number which is the same as the ID number of the ob-
ject that represents the user account. User IDs are used by other objects on the system. In par-
ticular, an object contains references (user IDs) to the initial creator and to all users who have
created versions within that object. Removing a user account might lead to an inconsistent state
where objects have owner / modifier references to nonexisting user accounts. Because of this,
it is not recommended to remove users from the system; the accounts to be removed should be
disabled instead.

User group
A user group is a content object (with at least one node assignment) that contains user accounts
and other user groups. In other words, a user group is a collection of users (similar to a directo-
ry containing files and subdirectories on a filesystem).

Policy
A policy is a rule that grants access to a specific function, or all functions, of a module. A poli-
cy consists of the following elements:

n Module name
n Function name
n Function limitation

The module name indicates the module to which the policy grants access. The function name
specifies the function to which the policy should be limited. A policy can either be restricted to
a single function, or grant access to all functions of a module. A module can have several or no
functions. The functions are assigned to the module’s views, so the access requirements for a
view are controlled by the functions assigned to that view. The functionview assignments can-
not be altered from within the Administration Interface. A policy granting access to a module’s
function can be further restricted using function limitations. This can only be done if the func-
tion itself supports limitations. A function may support zero, one or several limitations. The fol-
lowing table shows an overview of available function limitations.

Limitation Description
Class The Class limitation makes it possible to limit a policy to objects of certain types.
Node The Node limitation makes it possible to limit a policy to a specific node.
Owner The Owner limitation makes it possible to limit a policy to objects that are owned by

the user who is logged in.
Parent class The Parent class limitation makes it possible to limit a policy based on the type of ob-

ject referenced by the parent node.

User group

80 Chapter 2. Concepts and basics 81

Limitation Description
Section The Section limitation makes it possible to limit a policy to objects assigned to cer-

tain sections.

Status The Status limitation makes it possible to limit a policy to a certain version
status (published, archived, etc.).

Subtree The Subtree limitation makes it possible to limit a policy to a certain part of
the content node tree.

Role
A role is a named collection of policies. A role can be assigned to users and user groups. It is
possible to assign a role with additional limitations. The role limitation feature is typically use-
ful in a case where multiple users with similar permissions have to manipulate different parts of
the content node tree. Instead of creating a role for each user, the site administrator can create
a generic role and assign it with different limitations to the different users or groups. The role
limitations will override the limitations of the role’s policies. The following table shows an
overview of available role limitations.

Limitation Description
Section The Section limitation makes it possible to limit a role to objects assigned to certain

sections.
Subtree The Subtree limitation makes it possible to limit a role to a certain part of the content

node tree.

 Webshop
This section explains the e-commerce capabilities of eZ publish. The system comes with an in-
tegrated shop mechanism that plugs directly into the object / node tree model. Note that the
Webshop was significantly improved in eZ publish 3.8. Among other things, a datatype for stor-
ing prices in different currencies and advanced VAT handling was added. The improvements
made in 3.8 are not covered in the text below. The Webshop functionality is built around the
following components:

n Products
n Value Added Taxes (VATs)
n Discount rules
n Wish lists
n Baskets
n Orders

The following illustration shows how the Webshop components interconnect and work together.

80 Chapter 2. Concepts and basics 81

Figure 2.26. The integrated e-commerce solution

A product is represented by a content object (with at least one node assignment) that contains
information about the product itself, and a price. The price can be affected by a value added tax
and / or a discount rule. A discount rule can be configured to reduce the price of certain prod-
ucts by a percentage. The products can be put into a user’s wish list and / or shopping basket.
A user’s wish list and basket can be modified at any time. The contents of the shopping basket
can be purchased by initiating the checkout process. Once the checkout process is completed,
an order will be created. The system will automatically notify the site administrator and the us-
er who placed the order by sending out e-mails. A list of placed orders and sales statistics can be
viewed using the Administration Interface. An order is assigned a status which may be changed
by a user with sufficient permissions. A status log is kept for each order.

Value added taxes
The system allows the site administrator to set up different kinds of value added taxes (VATs).
A VAT consists of a name and a percentage. The Administration Interface makes it possible to
add, remove and modify VATs. The VATs are used by the price datatype.

Value added taxes

82 Chapter 2. Concepts and basics 83

The price datatype
As described above, a product consists of a content object and a price. The price must be rep-
resented by an attribute that makes use of the built-in price datatype. This is a special datatype
which plugs more deeply into the system. Instances of any class containing the price datatype
will automatically be treated as products. The ”Multiprice” datatype (added in 3.8) makes it
possible to store / provide prices in multiple currencies for the same product. Note that it is not
possible to use the ”Price” and the ”Multiprice” datatypes together on the same site.

A class attribute represented by the price datatype makes use of one of the predefined VATs.
There are two ways in which the selected VAT can be used. This configuration depends on
how the product prices are entered when the objects are created. The first alternative (Price
inc. VAT) is to be used if the prices entered already include the value added tax. The second
alternative (Price ex. VAT) should be used if the prices entered do not contain the value add-
ed tax. When the first alternative is used and the product is viewed, the price that was entered
will be shown. When the second alternative is used and the product is viewed, the price will
be the price that was entered, plus the VAT. When the object is in the basket and the basket is
viewed, it is possible to see the price of the products both with and without the VATs (regard-
less of which approach was used).

Discount rules
The final price of a product can be affected by a discount rule. A discount rule can be config-
ured to reduce the prices of certain products by a percentage. The discount rules can be placed
in different discount rule groups and are always active (there is no way to turn them on or off).
By default, a newly created discount rule affects all the products in the system. However, a dis-
count rule can be easily limited to a group of products. A discount rule can be limited in two
ways, which are mutually exclusive. The first alternative is to use a combination of the ”Prod-
uct type” and ”Section” limitations, which are described in the table below.

Limitation Description

Product type The Product type limitation makes it possible to limit a discount rule to products of
certain types (only classes that make use of the price datatype will be shown). The
default setting is Any, which means that it will affect all types of product objects.

Section The Section limitation makes it possible to limit a discount rule to products assigned
to certain sections. The default setting is Any, which means that it will affect prod-
uct objects in all sections.

The second alternative is to add individual products to the discount rule’s product list. When
the individual product list is used, the ”Product type” and ”Section” limitations will be omitted
and only the products in the list will be affected.

82 Chapter 2. Concepts and basics 83

 Shop-related datatypes
The following table shows the datatypes that plug in to the e-commerce subsystem of eZ pub-
lish.

Datatype Description

Price When used as an attribute in a content class, the Price datatype connects the in-
stances (objects) of that class to the Webshop system. As soon as an object has a
price attribute, users can put the object in their baskets and / or wish lists. Objects
without a price attribute cannot be put into a user’s basket and / or wish list.

Option The Option datatype makes it possible to create a single group of options for each
content object. Each option can be assigned a short text and an additional price. For
example, it can be used to sell T-shirts in different colors, where the price is differ-
ent for some (or all) colors.

Multi-option The Multi-option datatype makes it possible to create multiple groups of options
for each content object. Each option can be assigned a short text and an additional
price. This datatype works in the same way as the ”Option” datatype. The only dif-
ference is that instead of supporting only one group of options, it allows the crea-
tion of multiple groups of options for each content object.

Range-option The Range-option datatype makes it possible to create a single group of enumerat-
ed options for each content object. For example, it can be used in a scenario where
the goal is to sell shoes of different sizes and the size does not affect the price. For
each content object, the administrator needs to set up the available range (if appli-
cable).

Workflows
This section explains the workflow capabilities of eZ publish. The system comes with an inte-
grated workflow mechanism that makes it possible to perform different tasks with or without
user interaction. The workflow implementation is based on the following components:

n Events
n Workflows
n Workflow groups
n Triggers

An event is the smallest entity of the workflow system. It carries out a specific task. eZ pub-
lish comes with a collection of events that cover the needs of typical everyday tasks. For exam-
ple, the built-in ”approve” event makes it possible to have the contents of an object approved
by an editor (a user) before it is published. The built-in events are documented in the Workflow
events section of the online documentation. It is possible to extend the system by creating cus-
tom events for special needs. Custom workflow events have to be programmed in PHP. Refer
to the Extensions chapter for an example of how to create custom workflow events.

Workflows

84 Chapter 2. Concepts and basics 85

The following illustration shows the relationships between the elements in the list above.

Figure 2.27. The workflow system

A workflow is a collection of events. In other words, it defines an ordered sequence of actions
that will be executed when the workflow is running. The workflows can be placed in different
groups. A workflow group is a collection of workflows. A workflow is initiated by a trigger. Al-
though a trigger is only capable of initiating a single workflow, several other workflows can be
started using the built-in multiplexer event (from within the workflow that was originally initi-
ated by the trigger). A trigger is associated with a function of a module. It will start the specified
workflow either before or after that function has been completed. The following table gives an
overview of the standard / built-in triggers.

ID Module Function Connection type

1 content publish before

2 content publish after

3 shop confirmorder before

4 shop checkout before

5 shop checkout after

84 Chapter 2. Concepts and basics 85

Chapter 3. Templates
This chapter explains the eZ publish template system. It describes both the template language
and the way the system handles the template files. After reading this chapter, you will under-
stand:

n What a template is, and what it is not
n Template types (pagelayout, node and system templates)
n Template structure
n Template language
n The main template (pagelayout)
n Template variables available in the pagelayout
n How basic template tasks are accomplished
n How information can be retrieved from the CMS
n The template override system

Template basics
This section explains the concepts behind templates and the template system. eZ publish us-
es templates as the fundamental unit of site design. A template is a custom HTML file that de-
scribes how some particular type of content should be displayed. A template file always ends
with a .tpl extension. The built-in / default templates follow the XHTML 1.0 Transitional
specification. (Although note that the templates themselves do not validate as XHTML 1.0 doc-
uments.) In addition to standard HTML syntax, a template consists of eZ publish-specific code.
The eZ publish-specific code makes it possible to extract information from the system and pro-
vides common programmatic features like conditional branching, looping, etc. All eZ publish-
specific code must be placed inside a set of curly braces: { and }.

The following example shows part of a template that prints out the current time:

...
<h1>Time machine</h1>
<p>
 The current time is:
 {currentdate()|l10n(time)}
</p>
...

86 Chapter 3. Templates 87

The example above demonstrates how standard HTML is mixed with eZ template language
code. It shows the usage of the currentdate and the l10n template operators. (Unlike
functions, operators can receive input through a pipe). Since currentdate returns a UNIX
timestamp, it must be formatted using the l10n localization operator (or the output would not
make sense to humans). This is done by directing the output of currentdate() into l10n
using a pipe: |. The output will be the requested information formatted according to current lo-
cale settings. The time parameter tells the operator to output only the time; it could also have
outputted date, shortdate, datetime and so on.

Template generation

The template system is component-based. In most cases, a single page of HTML generated
by eZ publish is created by combining several templates. At a minimum, eZ publish always
renders the main template, which is called pagelayout. The pagelayout contains the html,
head and body tags; together with the stylesheets it dictates the overall look of a site. Among
other things, it describes the visual structure (layout, title, logo, menu, footer, etc.) that will be
presented for each web page the system generates.

Each incoming request tells eZ publish to run a specific module and to execute one of the mod-
ule’s views. When finished, the requested module / view combination will generate a result by
making use of a template. The result can be accessed through the $module_result array
which is available in the pagelayout template. The following illustration shows a simplified
three-step explanation of how eZ publish responds to HTTP requests.

Figure 3.1. Client - server cycle

Templates used by views are often referred to as ”view templates”. Whenever a view has finished
running, it will issue an internal template request. The requested template will be interpreted,
processed and converted to HTML. After processing, the system will put the resulting HTML
in the module’s result array. It can be accessed like this: {$module_result.content}.
When accessed, the system simply prints out its contents. This makes it possible to include the
HTML code that is generated by the views in the pagelayout. The following illustration shows
how the module / view result (generated by different modules / views, depending on the re-
quest) is included in the pagelayout:

86 Chapter 3. Templates 87

Figure 3.2. The module result as a part of the pagelayout

 View templates

There are two types of view templates: node templates and system templates. Node templates
are only used when a node is viewed (for example when a system URL starting with ”/content/
view” or the virtual URL of a node is requested). System templates typically provide HTML in-
terfaces to specific eZ publish features. For example, the template used by the search view of
the content module provides an HTML front-end for the built-in search engine.

The difference between the template types described above is the available variables and the
combination of override rules that can be used. A node template gives access to a variable
($node) that contains information about the node being viewed. Depending on the view that
was called, a system template typically gives access to several variables. A template override
rule makes it possible to display custom templates in specific cases. The override rules for node
templates are much more flexible than the override rules for system templates. For example, it
is possible to set up complex rule combinations that depend on the type of node being viewed,
the depth of the node in the tree, the section to which the node’s object is assigned and so on.
Refer to The template override system section for a detailed description of the template over-
ride mechanism.

 Node templates
Whenever eZ publish receives a request to output information about a node (either from a sys-
tem URL or a virtual URL), it executes the view view of the content module. If a system
URL is used, both the desired view mode and the target node must be specified in the URL. If
a virtual URL is used, eZ publish will determine which node should be accessed by looking up
the corresponding system URL in the internal URL table. When a virtual URL is used, the sys-
tem will always use the full view mode.

The templates for the different view modes must be placed inside the templates/ node/
view/ directory of a design. If the requested file is not found within the main design of the
siteaccess, the system will search for it in the additional designs and the standard design. Re-

Node templates

88 Chapter 3. Templates 89

fer to the Automatic fallback section of the Concepts and basics chapter for more information
about this feature. The templates/node/view/ directory of the standard design contains
templates for different view modes. A basic custom design typically contains a pagelayout and
a full view template. The following illustration shows the locations of these templates in a cus-
tom design called ”example”.

Figure 3.3. Location of pagelayout and full view template in example design

When a node is requested (and there are no template override rules for node templates), eZ pub-
lish will generate a page using the following templates:

Figure 3.4. Pagelayout + node view full template

88 Chapter 3. Templates 89

Custom node templates
Typical eZ publish sites use custom node templates. This is because there is almost always a
need to display various types of nodes in different ways. For example, information pages need
to look different than news articles; the welcome page has to be formatted in a special way; and
so on. Unlike custom system templates (which are mostly just modified copies of the standard
templates placed in a custom design), custom node templates are created as override templates.
The override templates are triggered by the template override system. This system offers a flex-
ible mechanism that can be programmed to use different templates based on various conditions.
For example, it can be programmed to use a template called article.tpl when the system
needs to show the contents of nodes referencing article objects and at the same time use the
template special_article.tpl when a specific article is accessed. Refer to the Template
override system section for more information about how this mechanism works.

The $node variable
Whenever the system makes use of a node template, a variable called $node will be avail-
able in the template. This variable is automatically set by the system, and it contains an
ezcontentobjecttreenode object that represents the requested node. This variable is
used to extract and display information about the node and the object it encapsulates. Refer to
Outputting node and object data for information about how to display node / object data.

 System templates
Whenever eZ publish receives a request to do something other than display a node (in other
words, the URL does not contain ”/content/view” or isn’t the virtual URL of a node), it will use a
system template. There are two main differences between system templates and node templates:

n System templates provide access to various variables (depending on the view that was
requested). A node template only provides access to a $node variable representing the
requested node.

n The override rules for node templates are much more flexible than the override rules
for system templates.

An eZ publish distribution provides default templates for all views. These templates are located
in the templates/ directory of the standard design. A view typically uses a template locat-
ed in a subdirectory with the same name as the module to which the view belongs. The name of
the template is usually the same as the name of the view (with a ”.tpl” extension). For example,
the login view of the user module corresponds to a template called login.tpl inside a
directory called user/. Another example is the basket view of the shop module. This view
will use a template called basket.tpl within the shop/ directory.

Custom system templates
Although eZ publish provides all the necessary system templates (contained in the standard de-
sign), a typical eZ publish site makes use of customized system templates. This is because the
default templates usually need to be tailored to the style of a custom design. Unlike custom
node templates, which are mostly provided using the template override system, custom system

System templates

90 Chapter 3. Templates 91

templates are usually modified copies of the standard templates located in the custom design.
For example, a custom template for the login view of the user module in a design called
”example” would be design/example/ templates/user/login.tpl. A custom
template for the search view of the content module would be design/example/
templates/content/search.tpl.

Design combinations
As mentioned above, a custom design typically contains a set of customized system templates.
However, creating a custom design that provides templates for all possible scenarios would be
unnecessary work. This is why the standard design should always be used as the default. The
automatic fallback system makes it possible to combine several designs so that the main design
(which is usually a custom design) does not have to provide all the necessary templates. When-
ever eZ publish is unable to find a template within the main design of the siteaccess, the system
will look for it in the additional designs and the standard design.

Commonly used system templates
The following table shows some of the most commonly used system templates.

Request URL Module View Template
Search interface /content/search content search /templates/

content/search.tpl
Shopping basket /shop/basket shop basket /templates/shop/

basket.tpl
Login page /user/login user login /templates/user/

login.tpl
User registration /user/register user register /templates/user/

register.tpl

The pagelayout
The pagelayout is the main template. It dictates the overall look of a site. The filename of the
pagelayout template must be pagelayout.tpl. It has to be placed inside the templates/ directory
of a design. If eZ publish is unable to find a pagelayout within the current design (specified by
the siteaccess), it will attempt to use the pagelayout template provided by one of the fallback
designs. The following illustration shows the location of the pagelayout template located in a
design called ”example”.

Figure 3.5. The location of the pagelayout (main) template

90 Chapter 3. Templates 91

The pagelayout contains the html, head and body tags (the outer HTML framework); to-
gether with the stylesheets it dictates the overall look of a site. Among other things, it describes
the visual structure (layout, title, logo, menu, footer, etc.) that will be presented for every page
request. The following example shows a basic pagelayout:

<!DOCTYPE html PUBLIC ”-//W3C//DTD
 XHTML 1.0 Transitional//EN”
 ”http://www.w3.org/TR/xhtml1/DTD/
 xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”
 xml:lang=”en” lang=”en”>

<head>

<style type=”text/css”>
 @import url({‘stylesheets/core.css’
 |ezdesign});
 @import url({‘stylesheets/debug.css’
 |ezdesign});
</style>

{include uri=’design:page_head.tpl’}

</head>

<body>
{$module_result.content}

<!--DEBUG_REPORT-->

</body>
</html>

The document type
The first line in the pagelayout is used to declare the document type of the pages generated by
eZ publish. Per HTML and XHTML standards, a DOCTYPE (short for ”document type decla-
ration”) informs browsers and syntax validation engines about the version of (X)HTML that is
being used. (This information should be included at the very top of every web page, which is
why it is the first part of the pagelayout.)

The DOCTYPE declaration is a key component for rendering and page compliancy. A DOC-
TYPE that includes a full URL tells the browser to render the page in standards-compliant
mode, treating the (X)HTML, CSS, and DOM structures as they should be treated according to
the standards. A missing, incomplete or outdated DOCTYPE throws most browsers into Quirks
mode. In this mode, the browser assumes that the document was written using old-fashioned,
invalid markup and code per the chaotic industry norms of the late 1990s. In other words, the
page will most likely not render according to standards and it will certainly not validate.

The document type

92 Chapter 3. Templates 93

The HTML tag
HTML tags encapsulate the marked-up contents of the web page. In addition to the tag itself,
the HTML tag in the example above includes the URL for the XHTML specification. XHTML
is a family of current and future document types and modules that reproduce, subset, and ex-
tend HTML 4. The XHTML family document types are based on XML, which means that they
are designed to work in conjunction with XML-based user agents. Another way of describing
them is to say that they are XML documents that can also be parsed by web browsers.

In document processing, it is often useful to identify the natural or formal language in which
the content is written. The lang and xml:lang attributes specify the language of the entire
XHTML element. The value of the xml:lang attribute takes precedence. The language values
should be set to the language used throughout the site. The values of the attributes are language
identifiers defined by ISO 3166-1 (and the corresponding ISO 3166-1-alpha-2) standards.

The head tag
The head tag contains information about the document itself. The information contained here
does not display on the page in the web browser. Only the contents of the title tag will be
made visible (as the title of the browser window). The head tag contains meta-data for the
HTML document, such as information about which CSS files should be used, a description of
the document itself, keywords and so on.

 Cascading Style Sheets

The pagelayout in the example above makes use of two CSS files: core.css and debug.css.
The code encapsulated by curly braces is eZ publish-specific code. The text within the quotes is
being piped into a template operator called ezdesign. The operator prepends the text with the
path to the current design directory (the one that is specified using the SiteDesign configu-
ration directive). This technique ensures that the path to the CSS files is always correct, regard-
less of the access method. For example, if the name of the current design is ”my_design” and it
includes a CSS file called example.css, the following output will be produced:

@import url
 (”/design/my_design/stylesheets/example.css”);

The core.css and debug.css files are part of the standard design that comes with eZ
publish. It is not necessary to have these CSS files in the stylesheets/ directory of a cus-
tom design. If eZ publish is unable to find the files within the current design, it will automati-
cally use the ones in the standard design. Refer to the Automatic fallback section of the Con-
cepts and basics chapter for a detailed description of the fallback mechanism. Because of the
fallback system, the style part of the pagelayout above will most likely result in the following
HTML output:

...
<style type=”text/css”>
 @import url
 (”/design/standard/stylesheets/core.css”);
 @import url

92 Chapter 3. Templates 93

 (”/design/standard/stylesheets/debug.css”);
</style>
...

The core stylesheet

The core.css file defines a standard set of basic styles (font styles, sizes, margins, etc.) for
both general HTML elements and some eZ publish-specific classes. The eZ publish-specific
classes are used by the standard templates. A site that makes extensive use of the default tem-
plates should always have the core.css file included in the pagelayout. Otherwise, the miss-
ing styles may cause unexpected rendering of various elements.

The standard core.css file should never be changed. If there are basic styles in core.css
that don’t fit the visual environment of a site, a modified version of core.css may be placed
in the custom design that the site uses. However, the recommended solution is to create a com-
pletely new CSS file that contains both custom classes and overrides for elements defined in
core.css.

The debug stylesheet

The debug.css file contains styles used to format the debug output which appears at the
bottom of the page when debug output is enabled. Use of the debug.css file is only neces-
sary during the development of the site (which is typically when debug information is needed).
Therefore it can be removed or commented out before the site is launched.

Document information

The system is capable of automatically generating information about the page itself (title, me-
ta tags, keywords, etc.). This is done via the inclusion of the page head template (page_
head.tpl), which is located in the templates directory of the standard design. If eZ publish
is unable to find the requested file in the current or custom design, it will automatically fallback
and use the file located in the standard design.

The body tag
The body tag defines the document’s body, which contains the contents of the web page (text,
images, etc.), marked up in an orderly fashion. At a minimum, an eZ publish pagelayout should
contain the result from the requested modules. If it doesn’t, no dynamic output will be dis-
played. In other words, the $module_result.content should always be part of the main
template.

Module result

Upon every request, eZ publish automatically generates an array called module_result.
This array is available only in the pagelayout template. It contains all necessary information
about which module was run, which view was called, the output that was produced and so on.
The actual output (for example, the contents of a news article) can be included in the pagelay-
out by accessing the ”content” element of the $module_result array. The syntax is:

{$module_result.content}

The body tag

94 Chapter 3. Templates 95

When the pagelayout is rendered, the {$module_result.content} will be replaced with
the actual output produced by the requested module. Refer to the Variables in pagelayout sec-
tion for an overview of the template variables that can be accessed from within the pagelay-
out.

 Debug information

The last part of a typical eZ publish pagelayout is an HTML comment that looks like this:

<!--DEBUG_REPORT-->

If the debug information is turned on, eZ publish will replace this comment with a debug report
when the pagelayout is processed. In other words, the debug report will be included as part of
the generated page; it will not cause invalid output by breaking the HTML structure. The debug
reports generated by eZ publish are valid XHTML 1.0 Transitional.

The page head
The standard design contains a page head template that can be used to automatically gener-
ate tags that should be included in the head section of every HTML response. The output of
the standard head template (design/ standard/template/page_head.tpl) can be
broken down into the following group of tags:

n Title tag
n Meta tags
n Link tags

The following HTML dump shows an example of the output from the standard page head tem-
plate.

<title>Current / Parent /
 Top - Site name</title>

<meta http-equiv=”Content-Type”
 content=”text/html;
 charset=iso-8859-1” />
<meta http-equiv=”Content-language”
 content=”eng-GB” />
<meta name=”author” content=”eZ systems” />
<meta name=”copyright” content=”eZ systems” />
<meta name=”description” content=”Content
 Management System” />
<meta name=”keywords” content=”cms, publish,
 e-commerce, content management, development
 framework” />
<meta name=”MSSmartTagsPreventParsing”
 content=”TRUE” />
<meta name=”generator” content=”eZ publish” />

94 Chapter 3. Templates 95

<link rel=”Home” href=”/” title=”Front page” />
<link rel=”Index” href=”/” />
<link rel=”Top” href=”/” title=”Current /
 Parent / Top - Site name” />
<link rel=”Search” href=”/content/advancedsearch”
 title=”Search Site name” />
<link rel=”Shortcut icon”
 href=”/design/standard/images/favicon.ico”
 type=”image/x-icon” />
<link rel=”Copyright” href=”/ezinfo/copyright” />
<link rel=”Author” href=”/ezinfo/about” />
<link rel=”Alternate”
 href=”/layout/set/print/content/
 view/full/64”
 media=”print” title=”Printable version” />

Title
The contents of the title tag are based on the location being viewed (the location within ei-
ther the content node tree or the system itself) and on the name of the site. The path to the ele-
ment being viewed is reversed, so the current element becomes the first component of the title.
The components of the path are separated by frontslashes. When a node is viewed, the path el-
ements will be the names of the objects which are encapsulated by the nodes that make up the
path, up to and including the target node. When a system function is being accessed (for ex-
ample the login view of the user module: ”/user/login”), the path will most likely be a
reversed version of the module / view combination that was used. The name of the site is ap-
pended at the end of the path, separated by a dash. The site name can be configured using the
SiteName directive in a configuration override for site.ini.

The example above demonstrates the output of the page head template when a node is being
viewed. The name of the object encapsulating the node is ”Current”. The name of the other ob-
jects (encapsulated by the parent node and so on) are ”Parent” and ”Top”. The name of the site
is ”Site name”.

 Meta tags
In addition to the content displayed on a web page, the HTML of the page may also include in-
formation about the document itself. This is achieved by using meta tags. The information pro-
vided within meta tags is usually not visible when the web page is viewed. However, the meta
tags are used by the web browser and by some search engines that index and rank the contents
of web pages. (Note that meta tags can do many things, including simulation of HTTP fea-
tures). The standard page head template outputs the most commonly used meta tags. It can be
broken down into three types of tags:

n HTTP-EQUIV meta tags
n Generic meta tags
n Additional meta tags

Title

96 Chapter 3. Templates 97

HTTP-EQUIV meta tags

Meta tags with an HTTP-EQUIV attribute are equivalent to HTTP headers. These tags control
the way a browser interprets the document. Tags using this form should have an equivalent ef-
fect when specified as an HTTP header. Some web servers automatically translate the contents
of these tags to actual HTTP headers. The HTTP-EQUIV meta tags in the page head ensure that
the browser (and also search engines) know which character set and language the document us-
es. The language and character set values are automatically set by eZ publish based on the lan-
guage and character set used by the site.

Generic meta tags

The generic meta tags make it possible to pass meta information about the document itself. Al-
though the specification of meta tags does not define a set of ”legal” meta data properties, it is
a common practice to include generic information such as the name of the author, description
of the site, copyright notices, keywords, etc. By making use of the MetaDataArray[...]
directive in a configuration override for site.ini, the site administrator can set up a custom
set of generic meta tags. eZ publish will generate a list of meta tags from the array of tag names
and values. The example above shows the default meta tags that will be used if no custom me-
ta tag configuration is present.

Additional meta tags

The last two meta tags set by the standard page head template prevent the use of smart tags, and
display the name of the software used to generate the output. (Smart Tags were a proposed fea-
ture of Windows XP that would allow Microsoft and its partners to insert their own links into
any web page when viewed with Internet Explorer.)

Link tags
Link tags in the HTML head make it possible to relate the document to other documents. This
is done using the REL and REV attributes. While REL links are used to establish relationships,
REV links are used to establish reverse relationships. Some browsers use the link tags to pro-
duce a navigation bar for the site. The link tags generated by eZ publish are specified in the
link.tpl file within the templates directory of the standard design. The standard page head
makes use of the links.tpl file. The default output of the standard page head template pro-
duces a basic set of links that can be used to navigate to different parts of the site. The follow-
ing list shows the link tags that the page head generates:

Link Description

Home The ”Home” link points to the root / start page of the site (same as ”Index” and
”Top”). It will always bring the user back to the front page (for example, http://
www.example.com).

Index The ”Index” link points to the root / start of the site (same as ”Home” and ”Top”).
It will always bring the user back to the front page (for example, http://
www.example.com).

96 Chapter 3. Templates 97

Link Description

Top The ”Top” link points to the root / start of the site (same as ”Home” and ”In-
dex”). It will always bring the user back to the front page (for example http://
www.example.com).

Search The ”Search” link points to the advanced search view of the content module. It
will bring the user to the advanced search interface (http://www.example.com/
content/advanced search).

Shortcut icon The ”Shortcut icon” defines the location of the favorite / shortcut icon. Most brows-
ers will display this icon in front of URLs in the address field and in the bookmark list.
The default shortcut icon is the double square white-orange eZ systems logo. It can be
easily replaced by putting a 16x16 pixel icon file (16 color BMP/Windows Icon For-
mat) called favicon.ico in the images/ folder of a site design.

Copyright The ”Copyright” link points to the copyright view of the ezinfo module. The de-
fault copyright page of eZ publish will be displayed (http://www.example.com/
ezinfo/copyright).

Author The ”Author” link points to the about view of the ezinfo module. The de-
fault about page of eZ publish will be displayed (http://www.example.com/
ezinfo/about).

Alternate The ”Alternate” link points to an alternate, printerfriendly version of the page that ex-
cludes the elements not needed for a printed document (such as the navigation bar).
The printer-friendly version of a page is achieved by using the set view of the lay-
out module.

Link parameters

The links can be turned off by passing enable_link=false() when including the page
head template:

{include uri=’design:page_head.tpl’
 enable_link=false()}

The link to the print layout can be turned off by passing enable_print=false() when in-
cluding the page head template:

{include uri=’design:page_head.tpl’
 enable_print=false()}

 Variables in pagelayout
The pagelayout template contains variables that can be used to display information about the
state of the system and / or to control the output. The following table shows the available var-
iables.

Variables in pagelayout

98 Chapter 3. Templates 99

Variable Type Description

$access_type array The name of the siteaccess (as ”name”) and the ID number (as
”type”) of the access method used (1=URL, 2=Host, 3=Port).

$anonymous_user_id integer The ID number of the content object that represents the anony-
mous user account (the default / standard value is 10).

$current_user object The ID number of the ezuser object of the user who is current-
ly logged in. If no user is logged in, the anonymous user ac-
count will be used.

$ezinfo array An array of three strings: ”version”, ”version_alias” and ”revi-
sion”. These strings contain information about the eZ publish
release being used.

$module_result array Contains information about the result (and the result itself)
generated by the module / view that was executed.

$navigation_part array A hash containing the name and the identifier (the keys are
”name” and ”identifier”) of the current navigation part,
for example: ”Content structure” and ”ezcontent-
navigationpart”. The navigation part is used by the Ad-
ministration Interface to determine which part the user inter-
acts with.

$re q u e s t e d _ u r i _
string

string Contains the site-specific part of the requested URL, for ex-
ample ”content/view/full/44” (system URL) or
”company/about” (virtual URL).

$site array Contains information about the siteaccess being used (site
name, design resource, meta tags, etc.)

$ui_component string Contains the user interface component which eZ publish uses
while the current page is being shown. This variable is used by
the Administration Interface.

$ui_context string Contains the user interface context of eZ publish while the cur-
rent page is being shown. This variable is used by the Admin-
istration Interface to distinguish between different modes (for
example, ”navigation”, ”edit”, ”browse”, etc.).

$uri_string string Contains the system version of the requested URL (for exam-
ple, ”content/ view/full/13”).

$warning_list array Contains an array of warnings related to problems that were
discovered when the page was rendered.

$module_result
The $module_result array contains the result that was generated by the module and view
that were executed. If eZ publish was instructed to display the contents of a node, the varia-
ble will contain additional information about the node that was requested. If eZ publish was in-
structed to do something else (almost anything that is not an actual node view), the result will
not contain additional information. The following tables show the contents of the $module_
result variable in the different scenarios.

98 Chapter 3. Templates 99

The default $module_result

Element Type Description

content string Contains the actual content (the result of templates) generat-
ed by the requested view.

path array An array of hashes containing information about the path
which leads to the page currently being viewed. Each hash
contains the following keys: ”text” and ”url”. The
”text” element usually contains the name of the module
or view (for example, ”Collected information”).
The ”url” element contains the address. The ”url” key
of the last element in the array is usually set to FALSE. This
is done in order to prevent linking to the page currently be-
ing viewed.
The standard page head template uses the path array to build
the title component of the head section. The path array
can also be used to build breadcrumb-style navigation aids
(i.e., a set of links that show a page-by-page path from the in-
dex page of a site to the currently displayed page.)

is_default_navigat
ion_part

boolean Returns TRUE if the default navigation part is being used (the
one that is set in the PHP code). Returns FALSE if the nav-
igation part of the current module and view has been recon-
figured by the site administrator. This can be done by mak-
ing use of the Navigation-Part directive of the [Mod-
uleSettings] section within a configuration override for
module.ini.

navigation_part string The identifier of the current navigation part (for example,
”ezcontentnavigationpart”). This variable is used
by the Administration Interface to determine the navigation
part the user interacts with.

ui_context string The user interface context that eZ publish is in while the cur-
rent page is being shown. This variable is used by the Ad-
ministration Interface to distinguish between different modes
(navigation, edit, browse, etc.)

ui_component string The user interface component which eZ publish uses while
the current page is being shown. This variable is used by the
Administration Interface.

uri string Contains the site-specific part of the requested URL, for ex-
ample ”content/view/full/44” (system URL) or
”company/about” (virtual URL). This tells eZ publish
which module and view should be run.

$module_result

100 Chapter 3. Templates 101

The $module_result when a node is being viewed

Element Type Description

content string The content (the result of templates) generated by the re-
quested view.

view_parameters array An array of the parameters that were sent to the view (for ex-
ample, ”limit”, ”offset”, etc.).

path array An array of hashes containing information about the path of
nodes that lead to the node currently being viewed. Each hash
contains the following components:

Key Description

text The name of the object referenced by the
node.

url The system URL of the node (for example
”content/view/full/44”).

url_ali
as

The virtual URL of the node (for example
”company/about_us”).

node_id The ID number of the node.

The node being viewed will have its ”url” and ”url_
alias” components set to FALSE. This is done in order
to prevent linking to the page that is currently being viewed.
The ”node_id” will also not be available. The path array
can, for example, be used to build a breadcrumb trail (that is,
a path with names (as hyperlinks) of the objects referenced
by the nodes that lead to the target/current node).

title_path array Similar to the ”path” array (see above). When a node is be-
ing viewed, the standard page head template uses the ”ti-
tle_path” array to build the title component of the
head section.

section_id string The ID number of the section to which the object referenced
by the node being viewed belongs.

 node_id string The ID number of the node being viewed.

navigation_part string The name identifier of the current navigation part (for ex-
ample, ”ezcontentnavigationpart”). This variable
is used by the Administration Interface to determine which
navigation part the user is interacting with.

content_info array Contains information about the node being viewed. Refer to
the next section for a list of content_info elements.

cache_ttl integer The TTL (Time To Live) value of the result generated by the
module’s view (as seconds). A TTL of minus one means that
the view cache should never expire. A TTL of zero means that
the result should never be cached.

100 Chapter 3. Templates 101

Element Type Description

is_default_navigat
ion_part

boolean Returns TRUE if the default navigation part is being used (the
one that is set in the PHP code). Returns FALSE if the nav-
igation part of the current module and view has been recon-
figured by the site administrator. This can be done by mak-
ing use of the NavigationPart directive of the [Mod-
uleSettings] section within a configuration override for
module.ini.

ui_context string The user interface context that eZ publish is in while the cur-
rent page is being shown. This variable is used by the Ad-
ministration Interface to distinguish between different modes
(navigation, edit, browse, etc.)

ui_component string The user interface component used by eZ publish while the
current page is being shown. This variable is used by the Ad-
ministration Interface.

uri string The site-specific part of the requested URL, for exam-
ple ”content/view/full/44” (system URL) or
”company/about” (virtual URL).

The $module_result content_info elements

Element Type Description

node_id string The ID number of the node.

parent_node_id string The ID number of the parent node.

object_id string The ID number of the object referenced by the node.

class_id string The ID number of the class of which the object is an instance.

class_identifier string The identifier of the class of which the object is an instance, for ex-
ample, ”forum_message”.

offset integer The offset view parameter.

viewmode string The view mode used to display the node (for example, ”full”, ”line”,
etc.).

node_depth string The depth of the node in the content tree.

url_alias string The virtual URL of the node (for example ”company/about_
us”).

persistent_
variable

n/a A variable set in one of the templates used by the view that was ex-
ecuted. Regardless of the caching mechanisms used, this variable
will be available in the pagelayout. The type of the persistent varia-
ble depends on the value it contains. If the variable is not set, it will
return a boolean FALSE.

$module_result

102 Chapter 3. Templates 103

Element Type Description

class_group array The ID numbers of the class groups to which the class (which the
object being viewed is an instance of) belongs. This variable is con-
nected with a feature that makes it possible to create template over-
rides based on class groups.

By default, the class_group always returns a boolean FALSE
value because the class group override feature is turned off. It can be
turned on by setting the EnableClassGroupOverride direc-
tive in the [ContentOverrideSettings] block of a configu-
ration override for content.ini to TRUE.

The template language
The eZ publish template language makes it possible to extract information from the system and
to solve common programmatic issues like conditional branching, looping, etc. All eZ publish-
specific code must be placed inside a set of curly braces: { and }. A template file is a combina-
tion of HTML and eZ publish template code. Note that the templates themselves do not vali-
date as XHTML documents. Everything that is encapsulated by curly braces will be interpret-
ed by the template parser when the template is processed. Everything outside the curly braces
will be ignored and will be sent to the browser without any changes.

Curly brace issues
Since curly braces are reserved for defining blocks of eZ publish template code, these charac-
ters cannot be used directly in templates. For example, JavaScript code cannot be inserted di-
rectly into a template file because it makes extensive use of curly braces. All non-template-spe-
cific code or text that uses curly braces must be enclosed in a literal section. The contents of a
literal section will be ignored by the template parser. The following example demonstrates the
usage of the literal tags:
...
{literal}
<script language=”JavaScript”
 type=”text/javascript”>
<!--
 window.onload=function()
 {
 document.getElementById
 (‘sectionName’).select();
 document.getElementById
 (‘sectionName’).focus();
 }
-->
</script>
{/literal}
...

102 Chapter 3. Templates 103

Outputting curly braces

It is possible to output curly braces using two template functions called ldelim and rdelim
(short for ”left delimiter” and ”right delimiter”). The following example demonstrates the use
of these functions:

...
This is the left curly brace: {ldelim}

This is the right curly brace: {rdelim}

...

The following HTML output will be produced:

This is the left curly brace: {

This is the right curly brace: }

 Comments
As in most programming languages, comments can be used to add inline explanations to the
code. Template comments are ignored by the parser and will not be displayed in the resulting
HTML. They will be completely removed from the output.

There is only one way to add template comments, and that is by encapsulating a block of code
by a matching pair of the ”{*” and ”*}” sequence of characters (”left curly brace + asterisk”
and ”asterisk + right curly brace”). In other words, a template comment is just like any other
template code, except that the curly braces are accompanied by adjacent asterisks. It is possible
to comment both single and multiple lines of code. However, nesting comments is not support-
ed (that is, you cannot comment a chunk of code that is already a comment). It is not possible to
add comments inside keywords. The following examples demonstrate the use of comments.

Single line comment

{* This is a single line comment. *}

The example above will not produce any output.

Multi-line comment

{* This is a long comment that
 spans across several lines
 within the template file. *}

The example above will not produce any output.

Nested comments (illegal)

{* {* Nested comments are not supported! *}
This text will be displayed. *}

The example above will produce the following output:

This text will be displayed.

Comments

104 Chapter 3. Templates 105

Variable types
The eZ publish template language supports the following variable types:

n Numbers
n Strings
n Booleans
n Arrays
n Objects

While some variable types can be created on the fly, others need to be created using an opera-
tor. Types that may be created directly are numbers and strings. Booleans and arrays must be
created using operators; objects may be created using miscellaneous functions and operators.
In addition to the types listed above, it is also possible to create and use custom types. Custom
types must be represented as objects.

Numbers

Numbers are numeric values. Numbers may be integer or floating-point values and may be pos-
itive or negative. The values are represented using PHP integers and floats. Refer to the PHP
documentation regarding valid ranges and levels of precision. Decimals are always indicated
using periods (there is no localization at this level). The following example demonstrates how
different numbers can be used directly within template code:
{13}
{1986}
{3.1415}
{102.5}
{-1024}
{-273.16}

Strings

A string is an arbitrary sequence of characters (text) that is enclosed by a matching pair of ei-
ther single (‘) or double (”) quotes. If the quotes are omitted, the string will be interpreted as a
function name. This will most likely result in a template error. Strings are usually expressed in
the following way:

{‘This is a string.’}
{”This is another string.”}

The output of the example above would be:

This is a string.
This is another string.

Using quotes

It is possible to use quotes inside strings. This can be done by either using a different kind of
quote symbol or by making use of the escape character (backslash). The following examples
demonstrate the use of quotes inside strings:

104 Chapter 3. Templates 105

{‘The following text is double quoted:
 ”Rock and roll!” ‘}
{”The following text is single quoted:
 ‘Rock and roll!’ ”}
{‘Using both single and double quotes:
 ”Rock\’n roll!” ‘}
{‘Using single quotes in a single-quoted string:
 \’Rock\’n roll!\’ ‘}
{”Using double quotes in a double-quoted string:
 \”Rock’n roll\” ”}

The output of the example above will be:
The following text is double quoted:
 ”Rock and roll!”
The following text is single quoted:
 ‘Rock and roll!’
Using both single and double quotes:
 ”Rock’n roll!”
Using single quotes in a single-quoted string:
 ‘Rock’n roll!’
Using double quotes in a double-quoted string:
 ”Rock’n roll!”

Because of the way template code is defined (enclosed in a matching pair of curly braces), the
right curly brace (”}”) must be escaped by the backslash character. This must be done regard-
less of the type of quotes that are used. Note that the left curly brace (”{”) cannot be escaped.
The following example demonstrates this.
{‘{ This text is inside curly braces.\}’}

The output of the template code above will be:
{This text is inside curly braces.}

Template strings do not support inline expansion of variables (as Perl and PHP do). In other
words, it is not possible to mix variables into strings. However, the concat operator can be
used to append the contents of some variable to a string. This means that this operator can be
used to build strings consisting of other strings and / or miscellaneous variables.

Booleans
Booleans are binary; they are either TRUE (1) or FALSE (0). A boolean must be created using
either the true or false template operator. For example:
{true()}
{false()}

In some cases it is possible to use integers as booleans. However, these will not be treated as
”real” booleans. Zero means FALSE; all non-zero values mean TRUE. Some parts of the sys-
tem are able to treat an array as if it were a boolean value. While an empty array means FALSE,
a non-empty array means TRUE.

Variable types

106 Chapter 3. Templates 107

Arrays

Arrays are containers capable of holding a collection of any other variable type, including other
arrays. An array can be a simple ordered list or a hash map (that is, an associative array). An el-
ement of an ordered list can be accessed using an index number. The number denotes the posi-
tion of the element inside the array (the first element is zero, the second element is one, and so
on). An element of an associative array can be accessed using an index number or an identifier.
Regular arrays can be created using the array operator. Associative arrays can be created us-
ing the hash operator. The following examples demonstrate the creation of arrays and hashes.

Example 1: Array of numbers

{array(2, 4, 8, 16)}

This example creates an array containing four numbers. The array will consist of the follow-
ing elements:

Index Value of element
0 2
1 4
2 8
3 16

Example 2: Array of strings

{array(‘This’, ‘is’, ‘a’, ‘test’)}

This example creates an array containing four strings. The array will consist of the following
elements:

Index Value of element
0 ‘This’
1 ‘is’
2 ‘a’
3 ‘test’

Example 3: Associative array

{hash(‘Red’, 16, ‘Green’, 24, ‘Blue’, 32)}

This example creates an associative array containing three key-value pairs. The array will con-
sist of the following elements:

Index Key Value
0 Red 16
1 Green 24
2 Blue 32

106 Chapter 3. Templates 107

Objects

Template objects are created by PHP code or by special template operators. The system uses
objects to represent complex data structures. For example, objects are used to represent infor-
mation about content nodes, attributes, translations, roles, policies, etc. An object consists of at-
tributes. Each attribute may represent any type of data (number, string, etc.), including another
object. The contents of an attribute may be accessed by using the attribute’s identifier. The fol-
lowing illustration shows the structure (with example values) of an object (”ezdate”) con-
taining information about a date.

Figure 3.6. The structure of the ”ezdate” object

Variable usage
Template variables must be referenced using dollar ($) notation, for example $my_vari-
able, $object_array, etc. eZ publish template variables are case sensitive. In other
words, $lollipop is not the same variable as $LolliPop. Template variables can be creat-
ed by the system (from PHP code) or by the author of the template (from within template code).
Regardless of how a variable is created, it can be changed using the set function. Some tem-
plates have preset variables; for example, the main template (pagelayout) provides access to a
collection of variables.

Creating and destroying variables

All variables used in a template must be declared and defined by the def function (short for de-
fine) before they can be used. A variable exists until the undef function (short for ”undefine”)
is used to destroy it. A previously declared variable will be automatically destroyed at the end
of the template file in which it was created. The following example demonstrates the most ba-
sic use of the def and undef functions.

{def $temperature=32}

 {$temperature}

{undef}

The output of the example will be 32. After the undef function is called, the $tempera-
ture variable will not be available. The memory that was allocated to represent the variable
will be freed. Both the def and the undef function can be used with multiple variables at the

Variable usage

108 Chapter 3. Templates 109

same time. In addition, the undef function can be used without any parameters. When called
without parameters the undef function automatically destroys all variables previously created
within the template. The following example demonstrates how the def and undef functions
can be used to create and destroy multiple variables at the same time.

{def $weather=’warm’ $celsius=32 $fahrenheit=90}

The weather is {$weather}: {$celsius} C /
 {$fahrenheit} F

{undef $celsius $fahrenheit}

The weather is still {$weather}.

{undef}

The output of this example will be:

The weather is warm: 32 C / 90 F
The weather is still warm.

In the example above, the def function is used to create three new variables: $temperature,
$celsius and $fahrenheit. The undef function is used twice. The first time, it is used
to destroy the $celsius and $fahrenheit variables. The second time it is called with-
out parameters; thus, the remaining variables (in this case only $temperature) will be de-
stroyed. For more information, refer to the online documentation of the def and undef func-
tions.

Changing the contents of variables

The value of a variable can be changed at any time using the set function. It can be used to
change the value of any variable, whether it was created by the system or inside a template. No
warning will be given if a system variable is changed. The set function can be used to change
the value of any variable regardless of the variable’s current type and the type of the new value.
(In other words, this function is capable of changing the type of a variable.)

The set function cannot be used to change the value of an element or attribute of an array, hash
or object. In fact, the elements and attributes of arrays, hashes and objects cannot be changed
from within template code. The following example demonstrates use of the set function.
{def $weather=’warm’}

The weather is {$weather}.

{set $weather=’cold’}

The weather is {$weather}.

{undef}

The output of the example will be:

The weather is warm.
The weather is cold.

Like the def and undef functions, the set function can work with multiple variables at the
same time. For more information, refer to the online documentation page for the set function.

108 Chapter 3. Templates 109

Accessing array elements

The elements of a simple array can only be accessed using numerical indexes. This method is
called index lookup. The elements of an associative array can be accessed using the key iden-
tifiers. This method is called identifier lookup. In addition, the elements of an associative array
can be accessed using index values. The following example demonstrates the different lookup
methods.

Index lookup

Index lookup is performed by appending a period (.) and an index number to the name of a sim-
ple or associative array. Index lookup may also be performed by appending a pair of brackets
that enclose the desired index value. The following example demonstrates how to access the el-
ements of a simple array using index lookup. Note the different syntaxes being used (periods
and brackets).

{def $sentence=array(‘Life’, ‘is’,
 ‘very’, ‘good!’)}
The 1st element is: {$sentence.0}

The 2nd element is: {$sentence.1}

The 3rd element is: {$sentence[2]}

The 4th element is: {$sentence[3]}

{undef}

The code above will output the following:

The 1st element is: Life
The 2nd element is: is
The 3rd element is: very
The 4th element is: good!

Identifier lookup

Identifier lookup can be performed by appending a period and an identifier name to the name of
an associative array. Identifier lookup may also be performed by appending a pair of brackets
that enclose the desired index value. The following example demonstrates how to access the el-
ements of an associative array using the identifier lookup method. Note the different syntaxes
being used (periods and brackets).

{def $sentence=hash(‘first’, ‘Life’,
 ‘second’, ‘is’,
 ‘third’, ‘very’,
 ‘fourth’, ‘good!’)}

The 1st element is: {$sentence.first}

The 2nd element is: {$sentence.second}

The 3rd element is: {$sentence[third]}

The 4th element is: {$sentence[fourth]}

{undef}

Variable usage

110 Chapter 3. Templates 111

The following output will be produced:

The 1st element is: Life
The 2nd element is: is
The 3rd element is: very
The 4th element is: good!

Index lookup and associative arrays

As mentioned above, the elements of an associative array may also be accessed using the index
method. The following example demonstrates this.

{def $sentence=hash(‘first’, ‘Life’,
 ‘second’, ‘is’,
 ‘third’, ‘very’,
 ‘fourth’, ‘good!’)}

The 4th element is: {$sentence.3}

The 3rd element is: {$sentence.2}

The 2nd element is: {$sentence[1]}

The 1st element is: {$sentence[0]}

{undef}

The following output will be produced:

The 4th element is: good!
The 3rd element is: very
The 2nd element is: is
The 1st element is: Life

Accessing object attributes

The attributes of an object can only be accessed using the attributes’ identifiers. An identifier
is the name of an attribute (similar to the keys of an associative array). The following example
demonstrates how the different attributes of a node object can be accessed from within a tem-
plate.

The ID of the node: {$node.node_id}

The ID of the object encapsulated by the node:
 {$node.object.id}

The name of the object: {$node.object.name}

First time the object was published:
 {$node.object.published|l10n(
 shortdate)}

If the $node variable contains a node that has ID number 44 and encapsulates object number
13 named ”Birthday” published on the first of April in 2003, the following output will be pro-
duced:

110 Chapter 3. Templates 111

The ID of the node: 44
The ID of the object encapsulated by the node: 13
The name of the object: Birthday
First time the object was published: 01/04/2003

Array and object inspection
By using the attribute template operator, it is possible to quickly inspect the contents of arrays
and template objects. The operator creates an overview of available keys, attribute names and /
or methods in an object or an array. By default, only the array keys and object attribute names
(also called identifiers) are shown. By passing show as the first parameter, the operator will also
display the values. The second parameter can be used to control the number of levels / children
to be returned (the default setting is 2). The following example demonstrates how the operator
can be used to inspect the contents of an ”ezcontentobjecttreenode” object.
{$node|attribute(show, 1)}

The following output will be produced:

Attribute Type Value
--
node_id string 2
parent_node_id string 1
main_node_id string 2
contentobject_id string 1
contentobject_version string 10
contentobject_is_published string 1
depth string 1
sort_field string 8
sort_order string 1
priority string 5
...

As the output shows, a lot of information can be extracted from a node object. In addition to
strings and numbers the object also consists of other objects. For example, the creator of the
node is an ”ezcontentobject” object. The creator object can be further inspected by do-
ing the following:
{$node.creator|attribute(show, 1)}

The following output will be produced:

Attribute Type Value
--
id string 14
section_id string 2
owner_id string 19
contentclass_id string 4
is_published string 0
...

Array and object inspection

112 Chapter 3. Templates 113

Again, this object contains a lot of information. As mentioned above, the attribute operator
can be used on both objects and arrays. The following example demonstrates how to inspect the
”data_map” array (which reveals the object’s attributes) of the node’s creator object.

{$node.creator.data_map|attribute(show, 1)}

The following output (where ”ezcontattrib” is shown as the short form of ”ezconten-
tobjectattribute”) will be produced:

Attribute Type Value
--
first_name object[ezcontattrib] Object
last_name object[ezcontattrib] Object
user_account object[ezcontattrib] Object
signature object[ezcontattrib] Object
image object[ezcontattrib] Object

 Control structures
The eZ publish template language provides a selection of mechanisms that can be used to solve
common programmatic issues such as conditional control, looping, etc. The following list
shows an overview of the available mechanisms:

n IF-THEN-ELSE
n SWITCH
n WHILE
n DO...WHILE
n FOR
n FOREACH

IF-THEN-ELSE

The IF construct allows for conditional execution of code fragments. It is one of the most im-
portant features of many programming languages. The eZ publish implementation makes it
possible to do conditional branching using the following elements: IF, ELSE and ELSEIF.
The ELSE and ELSEIF elements are optional. The following examples demonstrate the use
of this construct.

Example 1

{if eq($var, 128)}
 Hello world

{else}
 No world here, move along.

{/if}

112 Chapter 3. Templates 113

Example 2

{if eq($fruit, ‘apples’)}
 Apples

{elseif eq($fruit, ‘oranges’)}
 Oranges

{else}
 Bananas

{/if}

 SWITCH

The SWITCH mechanism is similar to a series of IF statements used within the same expres-
sion. This construct is typically useful when a particular variable needs to be compared to dif-
ferent values. It executes a piece of code depending on which value matched a given criteria.
The following example demonstrates basic use of this construct.

{switch match=$fruits}

 {case match=’apples’}
 Apples

 {/case}

 {case match=’oranges’}
 Oranges

 {/case}

 {case}
 Unidentified fruit!

 {/case}

{/switch}

If the value of the $fruits variable is ”oranges”, the following output will be produced:

Oranges

 WHILE

The WHILE construct is the simplest loop mechanism provided by the template language. It
tells eZ publish to execute the statements contained inside the WHILE command repeatedly,
as long as a given expression evaluates to TRUE. The value of the expression is checked at the
beginning of every loop iteration. If the given expression evaluates to FALSE, the statement(s)
will not be executed. The following example demonstrates basic use of this construct.

{while ne($counter, 8)}

 Print this line eight times ({$counter})

 {set $counter=inc($counter)}

{/while}

Control structures

114 Chapter 3. Templates 115

If the initial value of $counter is zero, the following output will be produced:

Print this line eight times (0)
Print this line eight times (1)
Print this line eight times (2)
Print this line eight times (3)
Print this line eight times (4)
Print this line eight times (5)
Print this line eight times (6)
Print this line eight times (7)

 DO...WHILE

A DO...WHILE loop is similar to a WHILE loop, except that the expression is checked at the
end of each iteration instead of at the beginning. The main difference is that this construct will
always execute the first iteration, regardless of how the test expression evaluates. The follow-
ing example demonstrates basic use of this construct.

{do}

 Keep printing this line ({$counter})

 {set $counter=inc($counter)}

{/do while ne($counter, 8)}

If the initial value of $counter is 0, the following output will be produced:

Keep printing this line (0)
Keep printing this line (1)
Keep printing this line (2)
Keep printing this line (3)
Keep printing this line (4)
Keep printing this line (5)
Keep printing this line (6)
Keep printing this line (7)
Keep printing this line (8)

 FOR

Generic looping may be achieved by using FOR loops. This construct supports looping over
numerical ranges in both directions. It also supports breaking, continual and skipping. The fol-
lowing example demonstrates basic use of this construct.

{for 0 to 7 as $counter}

 Value of counter: {$counter}

{/for}

114 Chapter 3. Templates 115

The following output will be produced:

Value of counter: 0
Value of counter: 1
Value of counter: 2
Value of counter: 3
Value of counter: 4
Value of counter: 5
Value of counter: 6
Value of counter: 7

 FOREACH

The FOREACH construct can be used to iterate over arrays in different ways. The behavior
of the command can be changed by using various techniques. The following example demon-
strates basic use of this construct.

{foreach $objects as $object}
 {$object.name}

{/foreach}

The example above will print out the names of the objects stored in the $objects array. If
this array stores four objects with the names ”Emmett Brown”, ”Marty McFly”, ”Lor-
raine Baines” and ”Biff Tannen”, the following output will be produced:

Emmett Brown
Marty McFly
Lorraine Baines
Biff Tannen

 Functions and operators
The eZ publish template language provides a collection of various functions and operators that
can be used to perform various tasks. In addition, it is possible to extend the system by creating
custom operators for special needs. Custom operators are programmed in PHP; an example is
provided in the Extensions chapter.

Template functions

A function takes a set of named parameters, performs a specific task and returns a result. It can
be called anywhere in a template using the following syntax:

{function_name parameter1=value1
 parameter2=value2 ...}

A function takes zero or more named parameters. The parameters must be specified after the
function name, separated by spaces. Since each parameter is specified using the parameter’s
name, the parameters can be provided in any order. Each parameter must be assigned a val-
ue using the equals sign. The following illustration shows a typical usage of a commonly used
function.

Functions and operators

116 Chapter 3. Templates 117

Figure 3.7. Typical components of a function call

The example above calls the node_view_gui function. This function displays a node by
including the template associated with the view mode. The node is specified using the con-
tent_node parameter. The desired view mode is specified using the view parameter.

Template operators

An operator takes unnamed parameters, performs a specific task and returns a result. An opera-
tor is capable of handling a parameter that is passed to it using a pipe. It can be called anywhere
in a template using the following syntax:

{$input_parameter|operator_name(parameter1,
 parameter2 ...)}

Because the operator only uses unnamed parameters, the parameters must be specified in the
order dictated by the operator’s documentation page. In addition, the parameters must be sep-
arated by commas. The following illustration shows a typical usage of a commonly used op-
erator.

Figure 3.8. Typical components of a template operator call

The example above demonstrates the usage of the datetime operator. This operator can be
used to convert a UNIX timestamp to a human-readable format. The timestamp is provided by
the $yesterday_evening variable as the input parameter. The first parameter tells the op-
erator that the output should be formatted using a custom schema. The schema is defined by the
second parameter (hours : minutes).

Piping
An operator takes input on the left side and produces output on the right side. A collection of
operators can be glued together using pipes. A pipe ensures that the output from one operator is
presented as the input parameter to another operator. The following example demonstrates how
pipes and operators can be used to create a string.

{concat(‘To ‘, ‘The ‘)|prepend(‘Back ‘)
 |append(‘Future’)}

The following output will be produced:

Back To The Future

116 Chapter 3. Templates 117

Basic template tasks
This section discusses some common issues related to template development.

Template inclusion
A template file can be included using the include function. Since this function makes it pos-
sible to include any file from any location within the eZ publish directory, the function must be
told that it should look for the file within the design/ directory. This can be done by prefix-
ing the path or filename with ”design:”. The following example demonstrates how the in-
clude function can be used to include a template file called footer.tpl that is located in the
templates/ directory of a design.

{include uri=’design:footer.tpl’}

If the requested file is not found within the main design of the siteaccess, the system will search
for it in the additional designs and the standard design. Refer to the Automatic fallback section
of the Concepts and basics chapter for more information about this feature.

Output washing
Variables that may contain invalid strings should always be cleared using the wash operator.
This operator ensures that the output does not contain any elements that should not be includ-
ed in the HTML generated by eZ publish. The following example demonstrates how the wash
operator works.

{def $bogus_string=’hello < world’}
{$bogus_string|wash()}

The following HTML output will be produced:

hello < world

E-mail address obfuscation

In addition to ensuring proper output, the wash operator can be used to obfuscate e-mail ad-
dresses on a web page. An obfuscated e-mail address has less chance of being harvested by a
robot searching for e-mail addresses for spammers. The following example demonstrates how
the wash operator can be used with an e-mail address.

{def $email_address=’allman@example.com’}
{$email_address|wash(‘email’)}

The following output will be produced:

allman[at]example[dot]com

String concatenation
The concat operator makes it possible to glue several strings together to produce a single
string. The following example demonstrates how this operator works.

Basic template tasks

118 Chapter 3. Templates 119

{def $my_string=’sausage’}
{concat(‘Liver ‘, $my_string, ‘ sandwich’)}

The following output will be produced:

Liver sausage sandwich

Custom view parameters
The URL of a node view request may contain custom parameters. The custom view parameters
must be specified at the end of the URL using a special notation. For each parameter, a name
and value must be specified. The name must be encapsulated by parentheses. Each element
must be separated by slashes. The following example demonstrates how custom parameters can
be used (in addition to the view parameters) in a system URL that requests a node.

http://www.example.com/content/view/
 full/13/(color)/green/(amount)/34

The same parameters can be appended to the virtual URL of the node:

http://www.example.com/company/
 about_us/(color)/green/(amount)/34

When custom view parameters are used, the system will create an associative array using the
names of the provided parameters as the keys. All parameter values will be treated as strings.
The array will be represented by the $view_parameters variable in the template. The pa-
rameters given in the examples above would produce an associative array with the following
contents:

Key Type Value
color string green

amount string 34

The following example demonstrates how the custom view parameters can be accessed in the
template used to display the node.

The color is: {$view_parameters.color}

The amount is: {$view_parameters.amount}

The following output will be produced:

The color is: green
The amount is: 34

 URL handling
Whenever a link, a non-content specific image, a stylesheet, etc., is to be included, a suitable
template operator must be used to ensure that the path to the included file is correct. At any
time, one of the following operators should be used:

n ezurl

118 Chapter 3. Templates 119

n ezimage

n ezdesign

 ezurl
The ezurl operator ensures that a URL works regardless of the location of the eZ publish
folder, the access method and the environment in which eZ publish is running (non-virtual host,
virtual host, etc.). Only the eZ publishspecific part of the URL needs to be provided. The rest
(http://, host, domain, directory, siteaccess, port, etc.) will be generated by the operator. The fi-
nal output will be a valid address. This approach makes it possible to use generic URLs in tem-
plates without the risk of having to modify every address when the site is moved and / or when
the access method is changed. By default, the ezurl operator outputs an address that is al-
ready enclosed by two double quotes. In other words, the output can be fed directly to a hyper-
link reference in the HTML code. The following examples demonstrate the usage of this op-
erator.

Link to a module / view (using a system URL)

Login

The example above demonstrates how to create a link to the login view of the user mod-
ule. The ”user/login” is one example; another example is a link to a node, such as
”content/view/full/34”. If eZ publish is running in a directory called ezpublish
on www.example.com using the URL access method, and the name of the siteaccess is
”my_company”, the operator will produce the following output:

http://www.example.com/ezpublish/index.php/
 my_company/user/login

If eZ publish is running in virtual host mode and uses the host access method, the following
URL will be produced:

http://www.example.com/user/login

Link to a node (using the node’s virtual URL)

When a link to a node (using the node’s virtual URL, also known as ”URL alias”) is created,
the address must be piped through the ezurl operator. The reason for this is that the internal
URL table only contains the eZ publish-specific part of the URLs. The following example dem-
onstrates how to use the ezurl operator to create a valid virtual URL for a node.

<a href={$node.url_alias
 |ezurl()}>Link to a node

If the URL alias of the node is company/about_us and eZ publish is running in a virtual
host environment using the host access method, the following URL will be produced:

http://www.example.com/company/about_us

For information about how eZ publish treats URLs, refer to the URL translation section of the
Concepts and basics chapter.

ezurl

120 Chapter 3. Templates 121

 ezimage
The ezimage operator works in the same way as the ezurl operator (described above), ex-
cept that it does not include the index.php part. This operator must be used every time a
non-content specific image is included in a template. The image must be placed in the imag-
es/ directory of one of the designs used by the siteaccess. The operator produces a valid link
to the image regardless of the directory, access method and / or the environment in which eZ
publish is running. The following example demonstrates how the ezimage operator should
be used.

<img src={‘women.jpg’|ezimage()}
 alt=”This is my image.” ... />

If eZ publish is using the host access method and the siteaccess is using a design called ”my_
design”, the operator will produce the following output:

http://www.example.com/design/my_design/
 images/women.jpg

If the image is placed inside a subdirectory within the images/ directory, the name of the sub-
directory must be specified in the template. If the requested file is not found within the main
design of the siteaccess, the system will search for it in the additional designs and the standard
design. Refer to the Automatic fallback section of the Concepts and basics chapter for infor-
mation about this feature.

 ezdesign
The ezdesign operator works in the same way as the ezurl operator (described above), ex-
cept that it does not include the index.php part. This operator must be used every time a de-
sign element (style sheets, JavaScript, etc.) is included in a template. The operator produces a
valid link for the given design component by providing the root to the design directory which
contains the target file. The following example demonstrates the proper way of including a CSS
file using this operator.

...
<style type=”text/css”>
 @import url({‘stylesheets/my_stuff.css’
 |ezdesign});
</style>
...

If eZ publish is using the host access method and the siteaccess is using a design called ”my_
design”, the operator will produce the following output:

http://www.example.com/design/
 my_design/stylesheets/my_stuff.css

If the requested file is not found within the main design of the siteaccess, the system will search
for it in the additional designs and the standard design. Refer to the Automatic fallback section
of the Concepts and basics chapter for more information about this feature.

120 Chapter 3. Templates 121

Information extraction
Information stored by eZ publish can be extracted using the fetch template operator. This op-
erator gives access to the fetch functions provided by a module. It is typically used to extract
nodes, objects, etc. using the content module. The fetch operator can only be used with modules
that provide support for data fetching. Refer to the Fetch functions section of the online docu-
mentation for a complete overview of available fetch functions. The following model and table
shows the usage and parameters of the fetch operator.

fetch(module, function, parameters)

Parameter Description
module The name of the target module.

function The name of the fetch function within the target module.

parameters An associative array containing the function parameters.

A module’s fetch functions and parameters are defined in the function_definition.php
file within the directory of the module.

Fetching a single node
The following example demonstrates how the fetch operator can be used to extract a single
node from the database.

{def $my_node=fetch(content, node,
 hash(node_id, 13))}
...

{undef}

The example above instructs eZ publish to fetch a single node from the content module. Only
one parameter is given, which is the ID number of the node to be fetched. The operator will re-
turn an ezcontentobjecttreenode object which will be stored in the $my_node var-
iable. This variable can then be used to extract information about the node and the object that
it encapsulates. For example, it is possible to extract the name, attributes and the time when
the object was published. If the node is unavailable or non-existing, or if the currently logged-
in user doesn’t have read access to it, the operator will return a FALSE boolean value. Refer to
the Objects section of the online reference documentation for an overview of what the differ-
ent objects provide.

Fetching multiple nodes
It is possible to fetch all the nodes that are directly below a specific node. This can be done by
using list instead of node as the second parameter to the fetch operator. The following
example demonstrates how the fetch operator can be used to extract all the nodes directly be-
low node number 13.

Information extraction

122 Chapter 3. Templates 123

{def $my_node=fetch(content, list,
 hash(parent_node_id, 13))}
...

{undef}

The operator will return an array of ezcontentobjecttreenode objects. The list fetch
function of the content module can take several parameters. These parameters are optional
and can be used to fine-tune the fetch, for example by filtering out specific nodes. The follow-
ing table gives an overview of the most commonly used parameters.

Parameter Description
sort_by The method and direction that should be used hen the nodes are sorted

(must be specified as an array).
limit The number of nodes that should be fetched.

offset The offset at which the fetch should start.

class_filter_type The type of filter that should be used, either ”include” or ”ex-
clude”.

class_filter_array The types of nodes that should be included or excluded by the filter (must
be specified as an array).

The following example demonstrates how to fetch an alphabetically sorted array of the ten lat-
est articles directly below node number 13.
{def $my_node=fetch(content,
 list,
 hash(parent_node_id, 13,
 limit, 10,
 class_filter_type, include,
 class_filter_array, array
 (‘article’)))}

...

{undef}

Refer to the online documentation for the list fetch function for a complete description of the
available parameters and examples of usage.

Outputting node and object data
Once an ezcontentobjecttreenode object representing a node is available in a tem-
plate variable, it can be used to output information about the node and the contents of the ob-
ject that the node encapsulates. The following section demonstrates the extraction of the most
common elements.

General information

The name of the object
{$node.name|wash}

122 Chapter 3. Templates 123

The name of the object is directly available through the node (in other words, it is possible to reach it
by $node.name instead of $node.object.name). The wash operator is used for ensuring that
the output doesn’t contain any invalid characters and / or sequences that may invalidate the HTML.

The date / time when the object was first published
{$node.object.published|l10n(‘shortdatetime’)}

Since the publishing value is stored as a UNIX timestamp, it must be properly formatted for
output. This can be done by using the l10n operator, which makes it possible to format differ-
ent types of values according to the current locale settings.

The date / time when the object was last modified
{$node.object.modified|l10n(‘shortdatetime’)}

Since the modification value is stored as a UNIX timestamp, it must be properly formatted for
output. This can be done using the l10n operator, which makes it possible to format different
types of values according to the current locale settings.

The name of the user who initially created the object
{$node.object.owner.name|wash}

The name of the user who last modified the object
{$node.object.current.creator.name|wash()}

The name of the class of which the object is an instance
{$node.object.class_name|wash()}

Object attributes
The attributes of an object can be extracted by using the data_map method. This method returns
an associative array of ezcontentobjectattribute objects, where each object represents
one attribute. The keys of the array are the class attribute identifiers. The following example dem-
onstrates how an attribute called first_name can be accessed using the object’s data map.
{$node.object.data_map.first_name}

The example above will not produce any valuable output because the requested data needs to
be formatted. There are two ways of outputting the contents of attributes:

n Raw output (the .output extension)
n Formatted output (the attribute_view_gui function)

The main difference between raw and formatted output is that formatted output makes use of a
template which in turn outputs the requested data. Raw output simply outputs the data within the
same template from which the request for output was issued. Output should always be present-
ed through the attribute_view_gui function. The raw output method should only be used
when / if necessary (for example when checking the value of an attribute using an IF statement).

Raw output
Raw output is a raw dump of the contents that are stored by the attribute. The syntax depends
on the datatype that represents the attribute. In most cases, it is possible to generate the output
by appending .output to the identifier.

Outputting node and object data

124 Chapter 3. Templates 125

Generic solution
The following example demonstrates how to output the contents of an attribute called my_at-
tribute.
{$node.object.data_map.my_attribute.content}

XML block
The following example demonstrates how to output the contents of an XML block called my_
xml.
{$node.object.data_map.my_xml.
 content.output.output_text}

Image
The following example demonstrates how to output an image stored by an attribute called my_
image.
<img src=”{$node.object.data_map.my_image.content
 [image_size].full_path}” ... />

Formatted output
Each datatype has a set of templates that are used to display the contents in different contexts.
There are at least two templates for each datatype: a view template and an edit template. While
the view template is used to display information, the edit template is used when the data is
being edited. The default templates for the datatypes are located within the standard design:
design/standard/templates/content/datatype/.
The attribute_view_gui function makes it possible to display the contents of an at-
tribute by inserting the view template of the datatype used by the attribute. The following ex-
ample demonstrates how this function can be used.
{attribute_view_gui attribute=
 $node.object.data_map.name_of_any_attribute}

The example above will generate proper output for any attribute regardless of the datatype.

The template override system
The template override system makes it possible to use templates other than the default ones
(specified in the code for the different views and templates). This mechanism allows the cre-
ation of template overrides for virtually any template used by eZ publish, including templates
that are requested by the include template function using the ”design:” prefix. In partic-
ular, template overrides are useful for displaying different types of nodes in different ways.

An override for a view template is usually activated by a set of conditions. If the conditions
match, the alternate template will be used. Different views provide different conditions; some
views do not provide any conditions at all. Refer to the Template override conditions section
of the online documentation for a description of available match rules. The most flexible set of
conditions are provided by the view view of the content module (used when a node is dis-
played). The following illustration shows how the override mechanism plugs into the rest of
the system.

124 Chapter 3. Templates 125

Figure 3.9. The override system

The template overrides must be defined in the override.ini.append.php file of a
siteaccess. This file consists of override blocks. A block is a named set of rules that tells eZ
publish to use an alternate template in a specific situation. For each block, the following infor-
mation must be specified:

n A unique name for the override
n The template that should be overridden
n The template that should be used instead of the one being overridden
n The name of the directory in which the override template resides (usually templates/)
n A set of conditions / rules that control when the override should be activated.

Note that the rules / conditions are optional. If no rules are specified, the override will always
be active. The following illustration shows a typical example of a template override with addi-
tional explanations.

Figure 3.10. Template override example

The example above defines an override called special_folders. This override will be
used when the system receives a request to display a node using full view. The override will
only be activated if the object referenced by the node is an instance of the folder class and if it
belongs to section number 34. When the override is activated, the system will attempt to use
the alternate template (override/templates/special_folder.tpl, located in the
main design). If eZ publish is unable to find the alternate template, it will look for it in the addi-
tional designs and the standard design. Refer to the Automatic fallback section of the Concepts
and basics chapter for more information about this feature.

The template override system

126 Chapter 3. Templates 127

Multiple / conflicting overrides
The priorities of the overrides are determined by their positions in the file. If there are several
overrides with similar or equal rules, eZ publish will use the first override that matches and thus
the rest of the overrides will be omitted. Because of this, overrides that are, for example, acti-
vated on a node ID or an object ID basis should always be placed first. Otherwise they might
never be triggered because of the presence of a more generic override with a higher priority.

Template override example
The following example demonstrates how the template override system can be used to display
alternate templates in different situations.
Imagine a simple content tree consisting of two folders: ”News” and ”Products”. The ”News”
folder contains news articles and the ”Products” folder contains products. The following illus-
tration shows an example of such a tree.

Figure 3.11. Example content node tree

Without any overrides, eZ publish will most likely display all nodes using the same template.
This would probably be the default full view template located in the standard design. However,
what if we wish to display custom / alternate templates for the different nodes? We would per-
haps like the system to behave in the following way:

n Display a special ”welcome” template when the ”My site” node is accessed.
n Display a custom folder template when a folder is accessed.
n Display a custom article template when a news article is accessed.
n Display a custom product template when a product is accessed.

The requests in the list above can be easily fulfilled by creating a couple of overrides. The wel-
come page should be approached by using an override that is triggered by the identification
number of the ”My site” node. The rest of the requests can be approached by using the class
identifier key, which allows an override to be triggered when an object of a certain class is ac-
cessed. The following example shows the contents of an override. ini.append.php
file that makes this possible:

126 Chapter 3. Templates 127

Override for welcome page
[welcome_page]
Source=node/view/full.tpl
MatchFile=welcome.tpl
Subdir=templates
Match[node]=2

Override for folders
[my_folder]
Source=node/view/full.tpl
MatchFile=my_folder.tpl
Subdir=templates
Match[class_identifier]=folder

Override for articles
[news_articles]
Source=node/view/full.tpl
MatchFile=my_article.tpl
Subdir=templates
Match[class_identifier]=article

Override for products
[products]
Source=node/view/full.tpl
MatchFile=my_product.tpl
Subdir=templates
Match[class_identifier]=product

The alternate templates should be stored in the override/templates/ subdirectory of
the main design used by the siteaccess. The following illustration shows where the templates
would be located in a design called ”example”.

Figure 3.12. Pagelayout + override templates in example design

Template override example

128 Chapter 3. Templates 129

When the system is in use, the different overrides would be activated based on the given condi-
tions. The following illustration shows where and when the different alternate templates would
be used.

Figure 3.13. Template override example

Every time a node referencing a folder object is viewed, the system will use the my_folder.tpl
template. When an article is viewed, the my_article.tpl template will be used. When a
product is viewed, the my_product.tpl template will be used. When node number 2 (the
”My site” node) is viewed, the my_welcome.tpl will be used.

128 Chapter 3. Templates 129

Chapter 4. Common solutions
This chapter contains a collection of common solutions, tips and tricks which will be useful
for a rookie eZ publish developer. Without delving into too much detail, this chapter contains
the information a typical developer will need to create a basic but feature-rich eZ publish site.
Among other things, the following topics are covered:

n How to configure siteaccesses for new sites
n How to include breadcrumbs in the pagelayout
n How to add a search interface to the pagelayout
n How to configure the search results
n How to reindex the search
n How to include and use the page navigator
n How to reset the administrator password
n How to change the username of a user
n How to add login functionality to a site
n How to create a protected area
n How to create and use custom XML tags
n How to back up and restore a site

Setting up siteaccesses for a new site
A typical eZ publish site consists of two siteaccesses: a public interface for visitors and a re-
stricted interface for administrators. The following steps describes the process for creating a
new site. Refer to the installation chapter for further details regarding commands, paths, etc.

1. Create a new database for the new site.
2. Initialize the database using the kernel_schema.sql and the cleandata.sql

scripts.
3. Create the directories for the siteaccesses:
 settings/siteaccess/example/

 settings/siteaccess/example_admin/

4. Create the site.ini.php configuration override for the ”example” siteaccess (under
settings/siteaccess/example/):

130 Chapter 4. Common solutions 131

<?php /* #?ini charset=”iso-8859-1”?

[SiteSettings]
SiteName=Example
SiteURL=www.example.com
IndexPage=/content/view/full/2
LoginPage=embedded

[DatabaseSettings]
DatabaseImplementation=ezmysql
Server=localhost
User=root
Password=
Database=example

[DesignSettings]
SiteDesign=example

[FileSettings]
VarDir=var/example

[SiteAccessSettings]
RequireUserLogin=false
ShowHiddenNodes=false

[MailSettings]
AdminEmail=webmaster@example.com
EmailSender=webmaster@example.com

[InformationCollectionSettings]
EmailReceiver=webmaster@example.com

[UserSettings]
RegistrationEmail=webmaster@example.com

[TemplateSettings]
TemplateCache=disabled
TemplateCompile=disabled
ShowXHTMLCode=disabled
Debug=disabled

[ContentSettings]
ViewCaching=disabled

[RegionalSettings]
Locale=eng-GB
ContentObjectLocale=eng-GB
TextTranslation=disabled
[DebugSettings]

130 Chapter 4. Common solutions 131

DebugOutput=enabled
Debug=inline
DebugRedirection=disabled

*/ ?>

These settings instruct eZ publish to do the following when the ”example” siteaccess is in
use:

n Use a database called ”example”
n Use a design called ”example”
n Use a var directory called ”example”
n Allow anonymous visitors browse the site
n Hike nodes marked as hidden
n Send all mail generated by the system to ”webmaster@example.com”
n Do not use any caching mechanisms
n Do not show the template debug messages
n Use British English as the default language for content
n Use British English when displaying interfaces, sending mail, etc.
n Show debug messages at the bottom of every page
n Do not debug internal redirections

5. Create the configuration overrides for the ”example_admin” siteaccess. The quickest and
easiest way is to do this as follows:
n Copy the contents of the settings/siteaccess/admin/ directory (the one that

was generated by the Setup Wizard) to the settings/siteaccess/example_
admin/ directory

n Edit site.ini.append.php and ensure that it uses the correct database, var di-
rectory, e-mail addresses, etc.

 In other words, the site.ini.append.php file for the ”example_admin” siteaccess
(under settings/siteaccess/example_admin/) should look like this:

<?php /* #?ini charset=”iso-8859-1”?

[SiteSettings]
SiteName=Example
SiteURL=www.example.com
IndexPage=/content/view/full/2
LoginPage=embedded

[DatabaseSettings]
DatabaseImplementation=ezmysql
Server=localhost
User=root
Password=
Database=example

Setting up siteaccesses for a new site

132 Chapter 4. Common solutions 133

[DesignSettings]
SiteDesign=admin

[FileSettings]
VarDir=var/example

[SiteAccessSettings]
RequireUserLogin=true
ShowHiddenNodes=true

[MailSettings]
AdminEmail=webmaster@example.com
EmailSender=webmaster@example.com

[InformationCollectionSettings]
EmailReceiver=webmaster@example.com

[UserSettings]
RegistrationEmail=webmaster@example.com

[TemplateSettings]
TemplateCache=enabled
TemplateCompile=enabled
ShowXHTMLCode=disabled
Debug=disabled

[ContentSettings]
ViewCaching=enabled
CachedViewPreferences=[- truncated -]

[RegionalSettings]
Locale=eng-GB
ContentObjectLocale=eng-GB
TextTranslation=disabled

[DebugSettings]
DebugOutput=disabled
Debug=inline
DebugRedirection=disabled

*/ ?>

 Note that the value of CachedViewPreferences should be copied from settings/
siteaccess/admin/site.ini.append.php. These settings instruct eZ publish
to do the following when the ”example_admin” siteaccess is in use:
n Use a database called ”example”
n Use the built-in admin design
n Use a var directory called ”example”
n Do not allow anonymous visitors to browse the site
n Show hidden nodes

132 Chapter 4. Common solutions 133

n Send all mail produced by the system to ”webmaster@example.com”
n Use all caching mechanisms
n Do not show template debug messages
n Use British English as the default / primary language for content
n Use British English when displaying interfaces, sending mail, etc.
n Do not show any debug messages
n Do not debug internal redirections

6. Set up the global configuration override for site.ini (in settings/override/
site.ini.append.php):

<?php /* #?ini charset=”iso-8859-1”?

[Session]
SessionNameHandler=custom

[SiteSettings]
DefaultAccess=example
SiteList[]
SiteList[]=example

[SiteAccessSettings]
CheckValidity=false
AvailableSiteAccessList[]
AvailableSiteAccessList[]=example
AvailableSiteAccessList[]=example_admin
MatchOrder=uri

[MailSettings]
Transport=sendmail

*/ ?>

The global configuration override has higher priority than the siteaccess configurations.
These settings instruct eZ publish to do the following at all times (for both siteaccesses in
our case):
n Use a custom session name handler
n Default to the ”example” siteaccess if unable to determine which siteaccess should be

used
n If WebDAV is enabled, allow clients to access the content used by the ”example”

siteaccess
n Do not run the web-based Setup Wizard
n Allow the usage of the ”example” and ”example_admin” siteaccesses
n Determine which siteaccess to use based on the first parameter provided after

index.php in the requested URLs
n Use a local application called sendmail (or a sendmail-compatible solution on UNIX

systems) to deliver mail

Setting up siteaccesses for a new site

134 Chapter 4. Common solutions 135

 Windows users should route outgoing mail through an SMTP server. This can be done by
making use of the following settings:

[MailSettings]
Transport=SMTP
TransportServer=mail.example.com
TransportPort=25
TransportUser=john
TransportPassword=secret

7. Clear all caches by running the following PHP script from within the root of the eZ pub-
lish directory:

 ./bin/php/ezcache.php --clear-all

 Note that this requires the presence of a command line interpreter for PHP scripts. The
cache can also be deleted manually by removing directories called cache/ inside the
var/ directory (and deeper within the structure) or by using a UNIX shellscript called
clearcache.sh located in bin/shell/.

8. Test the solution by accessing both the admin and the public siteaccess. The public siteac-
cess should fallback to the default / standard design.

 Setting up a virtual host-based solution
A virtual host setup together with the host access method is the best and most secure way to run
eZ publish on an Apache web server. In addition, the virtual host mechanism makes it possible
to run several sites on the same server without the need for multiple IP addresses. The follow-
ing example demonstrates how a system can be set up in order to function properly in a virtu-
al host environment. Consult the virtual hosts section of the Apache documentation for more
information.

1. Configure the DNS server so that it resolves the desired domains (for example
”www.example.com” and ”admin.example.com”) to the IP address of the web
server. Alternatively, if you are just testing the solution, you can edit your local hosts file
and add the necessary entries there.

2. Configure the web server so that it uses the desired virtual host configuration when
the site is being accessed (in this case when either ”www.example.com” or
”admin.example.com” is accessed). The following example shows the lines that
must be added to the httpd. conf file. It assumes that eZ publish is installed under /
var/www/example/, and that the IP address of the web server is ”62.70.12.230”.

NameVirtualHost 62.70.12.230

<VirtualHost 62.70.12.230>
 <Directory /var/www/example>
 Options FollowSymLinks
 AllowOverride None
</Directory>

134 Chapter 4. Common solutions 135

<IfModule mod_php4.c>
 php_admin_flag safe_mode Off
 php_admin_value register_globals 0
 php_value magic_quotes_gpc 0
 php_value magic_quotes_runtime 0
 php_value allow_call_time_pass_reference 0
</IfModule>

DirectoryIndex index.php

<IfModule mod_rewrite.c>
 RewriteEngine On
 Rewriterule ^/var/storage/.* - [L]
 Rewriterule ^/var/[^/]+/storage/.* - [L]
 RewriteRule ^/var/cache/texttoimage/.* - [L]
 RewriteRule ^/var/[^/]+/cache/texttoimage/.*
 - [L]
 Rewriterule ^/design/[^/]+/(stylesheets|
 images|javascript)/.* - [L]
 Rewriterule ^/share/icons/.* - [L]
 Rewriterule ^/extension/[^/]+/design/[^/]+/
 (stylesheets|images|javascripts?)/.*
 - [L]
 Rewriterule ^/packages/styles/.+/
 (stylesheets|images|javascript)/
 [^/]+/.* - [L]
 RewriteRule .* /index.php
</IfModule>

 DocumentRoot /var/www/example
 ServerName www.example.com
 ServerAlias admin.example.com
</VirtualHost>

 Note that it isn’t necessary to create a separate virtual host block for ”admin.example.com”;
it can be added to the existing block using the ServerAlias directive.

3. Make sure that the newly added virtual host configuration is active by restarting the web
server or making it reload the configuration files. Before restarting the service, it is a good
idea to run apachectl configtest which verifies the syntax of the configuration file. This al-
lows you to fix problems that would lead to the web server being unavailable (as the serv-
ice will not start if there are errors in the configuration file).

4. Configure eZ publish to use the host access method. This can be done using the web-
based Setup Wizard during installation, or by editing the global configuration override of
site.ini (settings/override/site.ini.append.php). The following ex-
ample shows the lines that should be added (remove similar lines if they are present).

Setting up a virtual host-based solution

136 Chapter 4. Common solutions 137

[SiteAccessSettings]
AvailableSiteAccessList[]
AvailableSiteAccessList[]=example
AvailableSiteAccessList[]=example_admin
MatchOrder=host

HostMatchMapItems[]=www.example.com;example
HostMatchMapItems[]=admin.example.com;
 example_admin

 This configuration tells eZ publish that it should use the ”example” siteaccess if a re-
quest starts with ”www.example.com” and ”example_admin” if the request starts with
”admin.example.com”. For more information about site management in eZ publish,
refer to the Site management section of the Concepts and basics chapter.

5. Clear all caches and test the solution. If everything works, ”www.example.com”
should bring up the public / user siteaccess and ”admin.example.com” should bring
up the Administration Interface.

Periodic and scheduled maintenance
Some features of eZ publish depend on a maintenance script that takes care of various tasks be-
hind the scenes. This script is located in the root of the eZ publish directory and should be ex-
ecuted at regular intervals. The script is called runcronjobs.php. Among other things, it
processes workflows, checks / validates URLs, sends out notification e-mails, etc. Although eZ
publish works without a periodical execution of runcronjobs.php, it is still recommended
to have it running in the background. Some features, for example the notification system, will
not be available if the script is not running. The most common practice is to instruct the oper-
ating system (or some application) to automatically run the script every 15 minutes. On UNIX/
Linux systems this can be done by making use of ”cron”. On Windows, the script can be run by
the ”Scheduled Tasks” service.

 Cronjobs on UNIX/Linux
Cron is the name of a utility that allows the automatic execution of tasks in the background. It
is typically used for periodic system administration and maintenance tasks (for example, creat-
ing a weekly backup). A program often referred to as the cron daemon is running silently in the
background, spending its time waiting and executing cron jobs. A cron job is a script or a com-
mand that is run at specified intervals by the daemon. The cron jobs must be set up in a cront-
ab. A crontab is a text file that contains information about the intervals and the tasks that should
be executed. The following example shows how a cronjob for eZ publish should be set up in
the crontab. It assumes that eZ publish is located in /var/www/ezpublish/, that the PHP
command line interface program is /usr/local/bin/php and that the name of the target
siteaccess is ”example”.

The path to the eZ publish directory.
EZPUBLISH=/var/www/ezpublish

136 Chapter 4. Common solutions 137

Location of the PHP command line interface binary.
PHPCLI=/usr/local/bin/php

Instruct cron to run ”runcronjobs.php”
every 15 minutes
0,15,30,45 * * * * cd $EZPUBLISH && $PHPCLI -C
 runcronjobs.php -q -s example 2>&1

When added to the crontab, the cron daemon will run the runcronjobs. php script us-
ing the PHP command line interface binary every 15 minutes. The -q parameter instructs the
script to run in quiet mode (suppressing unnecessary output). The -s example indicates
which siteaccess configuration the script should use. The ”2>&1” notation instructs the system
to combine standard output and error messages into one stream.

 Scheduled tasks on Windows
Unlike UNIX/Linux systems, Windows does not provide access to cron. Instead, Windows has
its own solution called Scheduled Tasks. A scheduled task can be set up by selecting Sched-
uled Tasks from the Control Panel. This will bring up a wizard that asks what should be execut-
ed, when, etc. It should be configured to run a batch (.bat) file every 15 minutes. The batch
file should navigate into the eZ publish directory and run the script as described in the previ-
ous example.

Creating a custom design
The following list of steps explains how a custom design can be created.

1. Create a new design directory:

 design/example/

2. Create the necessary directories inside the new design directory:
n stylesheets/

n images/

n templates/

n override/templates/

3. Add a custom pagelayout (in design/example/templates/pagelayout.tpl):

<!DOCTYPE html PUBLIC
 ”-//W3C//DTD XHTML 1.0 Transitional//EN”
 ”http://www.w3.org/TR/xhtml1/DTD/
 xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”
 xml:lang=”en” lang=”en”>

<head>

<style type=”text/css”>

Creating a custom design

138 Chapter 4. Common solutions 139

 @import url({‘stylesheets/core.css’
 |ezdesign});
 @import url({‘stylesheets/debug.css’
 |ezdesign});
</style>

{include uri=’design:page_head.tpl’}

</head>

<body>

<h1>Hello world</h1>

{$module_result.content}

<!--DEBUG_REPORT-->

</body>

</html>

4. Make sure that the custom design is actually used by providing its name for the SiteDe-
sign directive in the configuration override of site.ini for the siteaccess.

5. Clear all caches and verify that the custom design is used; you should be able to see your
own pagelayout containing the ”Hello world” message.

 Adding images
The following example shows how an image that links back to the root of the site can be added
to the pagelayout (or any other template). Note the usage of the ezurl operator.

 <img src={‘example.png’|ezimage}
 alt=”Example.” />

Creating a simple menu
The following example shows how a basic menu can be created within the pagelayout. The
code extracts folder nodes that are directly below the content root. It then loops through the
fetched nodes and displays their names as links. A simple checking mechanism detects wheth-
er the node being viewed (the current node) is one of the menu items or not. If it is, it will not
be displayed as a link because it is already being viewed.

{* Fetch folders below the content root. *}
{def $elements=fetch(content, list,
 hash(parent_node_id, 2,
 class_filter_type, include,
 class_filter_array,
 array(‘folder’))}

138 Chapter 4. Common solutions 139

{* Loop through the fetched nodes. *}
{foreach $elements as $element}

 {* Check if a node is being viewed. *}
 {if $module_result.node_id}

 {* Check if the node is a menu item. *}
 {if eq($module_result.node_id,
 $element.node_id)}

 {* Display name of the node. *}
 {$element.name|wash}

 {else}

 {* Display name of node as link. *}

 {$item.name|wash}

 {/if}

 {else}

 {* Display name of node as link. *}

 {$item.name|wash}

 {/if}

 {/foreach}

Adding custom templates
There are two ways of adding custom templates to a design: by making use of the override
mechanism, or by adding a modified system template to the custom design. The first method
is useful when there is a need to show different kinds of nodes in different ways. The second
method is preferable when there is a need to use modified versions of miscellaneous system
templates (for example a customized login page or a custom search interface).

Adding an override template
Although the template override system can be used to replace any template on the system, it
is most often used to display different types of nodes using different templates. For example,
it can be used to display all folders using a template called my_folder.tpl, all articles us-
ing a template called my_article.tpl and so on. The following list of steps demonstrates
how eZ publish can be instructed to use a custom template called my_folder.tpl whenev-
er a folder node is requested.

1. Create the override rule that will trigger the custom template. It should be added to the
override.ini.append.php file which belongs to the public (not admin) siteaccess.
Example:

Adding custom templates

140 Chapter 4. Common solutions 141

[my_folder]
Source=node/view/full.tpl
MatchFile=my_folder.tpl
Subdir=templates
Match[class_identifier]=folder

 The example above will instruct eZ publish to use my_folder.tpl instead of node/
view/full.tpl when a folder node is being viewed using the full view.

2. Add the override template to the design. If the name of the custom design is ”example”, the
location of the template should be design/example/override/templates/my_
folder.tpl (create the directories that do not exist).

3. Add some dummy code to the newly created template (for quick verification). Example:
 <h1>This is my custom folder template...</h1>

 The name of the node is: {$node.name|wash}

4. Clear the caches and attempt to view a folder by requesting its URL. The override rule
should kick in and the system should display the folder using the newly created template.

Adding a custom system template
This method is typically useful when there is a need to use a modified version of a system tem-
plate. It does not require the use of override rules; the system template can simply be copied from
one of the built-in designs (standard or admin) to the same location, and with the same name, in
a custom design. The copied template can then be modified to meet specific needs. The following
steps describe the way a custom login template can be added to a design called ”example”.

1. Copy design/standard/templates/user/login.tpl to design/example/
templates/user/login.tpl.

2. For the sake of identifying the custom template, add a line at the top. For example:

 <h1>This is my custom login template</h1>

3. Clear the caches and attempt to access the login view of the user module
(www.example.com/user/login); this view makes use of the login.tpl. If eve-
rything works, the system will detect and use the custom login template.

Including breadcrumbs in the pagelayout
A breadcrumb trail shows a path of links that lead to the current location within a hierarchical-
ly structured collection of pages. The path provides an overview of the structure, allowing the
user to navigate more easily. Every time a page is rendered, eZ publish automatically creates
a data structure containing the path. This structure is stored within the ”path” component of
the $module_result array. Depending on the requested URL, the path can either be a trail
of nodes leading to the one that is currently being viewed (for example ”Products | Tables | Red
kitchen table”) or links to miscellaneous views that lead to the system function currently being
accessed (for example ”Content | Search”).

140 Chapter 4. Common solutions 141

The easiest way to generate breadcrumbs is by including the page_toppath.tpl template
in the pagelayout:

{include uri=’design:page_toppath.tpl’}

The page_toppath.tpl template is part of the standard design. It will be automatically
used as long as the system falls back to the standard design; if you want, you can override this
template in your custom design (as described in the previous section).

Including a search interface in the pagelayout
Whenever an object is published, the contents of the attributes that are marked ”searchable”
will be automatically indexed by the search engine. The content module provides two interfac-
es that can be used for searching: a standard / simple interface and an advanced interface.

A search interface can easily be included by adding a form in the pagelayout (it is possible to
have this form in other templates as well). The following example shows the most basic search
form which consists of an input field and a button.

<form method=”get”
 action={‘/content/search’|ezurl}>
<input type=”text” name=”SearchText” />
<input type=”submit” name=”SearchButton”
 value=”Search” />
</form>

The form method can be either GET or POST; the system accepts both types. There are both
advantages and disadvantages in either case. For example, if the GET method is used, it is pos-
sible to bookmark a search because the requested URL contains all the necessary information.
On the other hand, the URLs will be long and cryptic.

The search form in the previous example posts data to an interface that simply generates a list
of hits. A common feature is to include a link that brings up a more advanced interface which
allows the user to fine-tune the search. The following code shows an example of a link to the
advanced search interface.

 Advanced search

Changing the search page limit
By default, eZ publish displays only 10 hits per page when showing search results. However,
the system is capable of displaying 5, 10, 20, 30 or 50 hits per page. The desired page limit can-
not be fed directly to eZ publish, it must be specified using a digit between 1 and 5. The follow-
ing table shows the available possibilities.

Including a search interface in the pagelayout

142 Chapter 4. Common solutions 143

Digit Page limit
1 5
2 10
3 20
4 30
5 50

According to the table above, a value of 4 will yield a page limit of 30. The following list ex-
plains how the page limit can be changed using this value. Note that the change must be done
manually inside several templates in order to work properly.

1. Add the following line to the search form in the pagelayout:

 <input type=”hidden” name=”SearchPageLimit”
 value=”4” />

2. Copy the design/standard/content/search.tpl template to the custom de-
sign.

3. Copy the design/standard/content/advancedsearch.tpl template to the
custom design.

4. Add the following line to the search form in the newly copied search templates:

 <input type=”hidden” name=”SearchPageLimit”
 value=”4” />

5. Replace all occurrences of the string ”SearchText=” with ”?SearchPageLimit=
4&SearchText=” in the newly copied search templates.

 Reindexing the search
The search tables are automatically updated every time an object is published. However, some-
times it is necessary to manually update the indexes. A typical case is when several objects are
created while some of the attributes are not searchable. What if we want those attributes to be
searchable? In this case the class needs to be edited and the searchable switch(es) must be en-
abled. While the missing indexes will be generated when the objects are re-published, a more
convenient solution is to run the reindexing script. This script will automatically rebuild the
search tables without any interaction. Another advantage of the reindexing script is that it will
not create any new versions and / or update the modification dates of the objects. The following
example shows how the reindexing script can be run for a siteaccess called ”example”:

./update/common/scripts/updatesearchindex.php \
-s example

Note that it is possible to use the --clean parameter to get rid of existing search data before
reindexing.

142 Chapter 4. Common solutions 143

Including and using a page navigator
Sometimes it is necessary to display information using several pages. For example, a long
list of products, search hits, employees, etc. is often broken up into shorter lists. The lists are
”glued” together by an interface that allows the user to jump between the different pages. eZ
publish provides an out-of-the-box solution for breaking up long lists by making use of some-
thing called a navigator. The navigator is a template that takes care of spreading information
over several pages. It can be included in any template that generates long lists. The system
comes with two navigators; the following table shows their locations.

Name Type Location
Simple Simple design/templates/standard/navigator/simple.tpl

Google Advanced design/templates/standard/navigator/google.tpl

Note that the ”Google” navigator has nothing to do with the popular search engine. As with all
other templates, the navigators may be copied to a custom design and modified. The following
example shows how a navigator can be included in order to produce a paged list.

{* The desired number of items per page. *}
{def $pageLimit=10}

{* The total number of nodes. *}
{def $nodeCount=fetch(content, list_count,
 hash(parent_node_id, $node.node_id))}

{* Fetches a part of the list. *}
{def $nodeArray=fetch(content, list,
 hash(parent_node_id, $node.node_id,
 offset, $view_parameters.offset,
 limit, $pageLimit))}

{* Displays the nodes. *}
{foreach $nodeArray as $item}

 {$item.name|wash}

{/foreach}

{* The navigator itself. *}
{include name=’navigator’
 uri=’design:navigator/google.tpl’
 page_uri=$node.url_alias
 item_count=$nodeCount
 view_parameters=$view_parameters
 item_limit=$pageLimit}

The following table describes the parameters that must be provided when a navigator is included.

Including and using a page navigator

144 Chapter 4. Common solutions 145

Parameter Description
name A custom name space.

uri The location of the navigator template file.

page_uri The URL of the current list.

item_count The number of objects in the list.

view_parameters The array containing the view parameters.

item_limit The desired number of items per page.

Resetting the administrator password
In case of an emergency, the administrator password can be reset in several ways. These are the
most commonly used methods, starting with the safest and most convenient:

n Log in as another user who has administrator privileges
n Use the forgotpassword view of the user module
n Run a database query

Logging in as another user
In some scenarios, an eZ publish site has a couple of users who are placed inside the ”Admin-
istrator” user group. This means that these users have administrator privileges and are able to
change the password of the administrator user. Log in using one of these users, edit the object
that represents the administrator user, change the password and republish the object.

Using the ”forgotpassword” feature
The user module provides a feature that can be used to generate a new password for any us-
er account on the system. The password will be sent to the user’s e-mail address. Note that this
option can only be used if the forgotpassword view has not been disabled. The following
example shows how the feature can be used to change the password for the administrator user.

n Access the forgotpassword view of the user module:
 http://www.example.com/user/forgotpassword

n Type in the e-mail address of the administrator user and press the Generate new pass-
word button.

n An e-mail will be sent to the administrator’s address. Follow the instructions in the e-mail.

Running a database query
This option requires access to the database. You need to log in to the database engine, select the
eZ publish database and run a query. The following example shows how the administrator pass-
word can be reset to ”publish” - which is the default password. Note that ”publish” is a weak
and commonly known password, it should be avoided because of the obvious security issue.

UPDATE ezuser SET password_hash=”publish”,
password_hash_type=5 WHERE contentobject_id=14;

144 Chapter 4. Common solutions 145

The password will be stored in the database without any form for encryption because hash type
5 means ”plain text”. After running the query in the previous example, the password should be
changed using the Administration Interface. When the password is changed using the Admin-
istration Interface, eZ publish will store an encrypted version of the new password. Note that
you can also generate encrypted passwords by running a database query, as demonstrated in
the next section.

Changing the username of a user
The username of a user cannot be changed from within the Administration Interface. A user-
name can only be changed by accessing the database and running a query. Note that the pass-
words in the ezuser table depend also on the usernames. This means that when you change
the username of a user account, the password must also be updated. The following example
shows how to change the username of an account with user ID 113 to ”joshua” and set the pass-
word to ”hello”:
UPDATE ezuser SET login=’joshua’,
 password_hash=MD5(‘joshua\nhello’),
 password_hash_type=2
 WHERE contentobject_id=113;

Note that an incorrect query might damage your user data. You should always make a backup
before attempting to manually change the database.

Adding login functionality
The following template code demonstrates how login functionality can be added to an eZ pub-
lish site. The code should be placed inside the pagelayout.

{if $current_user.logged_in}

 Logged in: {$current_user.contentobject.name}

 <a href={‘/user/logout’|ezurl}Logout

{else}

 <a href={‘/user/login’|ezurl}Login

{/if}

The example above will check if a user is logged in. If yes, it will display the full name of the
logged in user along with a Logout link. If no user is logged in, a link to the login view will
be displayed.

It is possible to force the login view to use a custom pagelayout called loginpagelayout.
tpl. This can be done by setting the LoginPage directive within the [SiteSettings]
block of a configuration override for site.ini to ”custom” (instead of ”embedded”).

Changing the username of a user

146 Chapter 4. Common solutions 147

It is possible to embed the login form in a template. For example, it could be added as a part
of the pagelayout, so that it is always visible and accessible). The following example demon-
strates how this can be done.

<form method=”post” action={‘/user/login’|ezurl}>

</label>Username:</label>
<input type=”text” name=”Login” />

</label>Password:</label>
<input type=”password” name=”Password” />
<input type=”submit” name=”LoginButton”
 value=”Log in” />
</form>

The user may be redirected to a specific page after a successful login. This can be done by
changing the value of the DefaultPage directive within the [SiteSettings] block of a
configuration override for site.ini. Another way of doing it is by adding a hidden variable
to the login form. The following example demonstrates this by showing how the user can be re-
directed to ”company/internal_affairs”.

<input type=”hidden” name=”RedirectURI”
 value=”/company/internal_affairs” />

Note that the specified URL must not be piped through the ezurl operator. The system will
automatically generate the correct URL.

Creating a protected area
There is often a need to provide a protected area that can only be accessed by a certain group of
users. A typical example could be a company site where most of the content is public except for
a section that requires the employees to be logged in. This functionality can be easily achieved
by making use of sections and roles. The following example explains how to create a secret sec-
tion that only users with special privileges can access.

1. Create a folder called ”Secret documents”.

2. Go to Setup, then Sections” and create a section called ”Secret section”.

3. Assign the newly created section to the ”Secret documents” folder.

4. Attempt to access the secret documents using the anonymous user; it should not be possible.

5. Go to the User accounts tab and create a new user group called ”Secret users”.

6. Create a new user within the ”Secret users” group.

7. Create a new role called ”Secret role” and add a new policy to it.

8. When asked which module the policy should grant access to, select content. When asked
which function the policy should grant access to, select read. During the final step, make
sure the policy grants access to the ”Secret section”. Click OK (twice).

9. Assign the newly created role to the ”Secret users” group.

146 Chapter 4. Common solutions 147

10. Attempt to log in with the account that was created inside the ”Secret users” group. The
user should be able to access the ”Secret documents” part of the site. Anonymous users will
still not be able to access this part of the site.

Creating a custom XML tag
Sometimes it is necessary to use custom XML tags that produce special, non-standard output.
The following example shows how a custom XML tag called ”alien” can be created. When
used, the system will output the contents of the tag wrapped inside a stylesheet. The name of
the stylesheet will be specified as a parameter of the custom tag. In addition, the tag will gen-
erate a list of child nodes which will contain the children of the node which provides the XML
block where the custom tag is used.

1. Create content.ini.append.php in settings/override/ so that the new set-
tings will work for all siteaccesses.

2. Add the following lines to the newly created file:

 <?php /*

 [CustomTagSettings]
 AvailableCustomTags[]=alien

 */?>

3. Create alien.tpl in design/example/templates/content/datatype/
ezxmltags/ (assuming that the name of the design being used is ”example”).

4. Add the following lines to the newly created file:

 <div class=”{$my_class}”>
 {$content}
 </div>

 {def $nodeArray=fetch(content, list,
 hash(parent_node_id,
 $#node.node_id))}

 {foreach $nodeArray as $nodeItem}

 {$nodeItem.object.name|wash}

 {/foreach}

5. Clear the caches.

6. Attempt to use the newly created custom tag using the following XML syntax:

 <custom name=”alien” my_class=”tagrag”>
 The quick brown fox jumps over the lazy dog.
 </custom>

When the contents of the node’s XML block is viewed and the alien tag is used, the system
should include the alien.tpl template.

Creating a custom XML tag

148 Chapter 4. Common solutions 149

Creating a feedback form
Feedback forms can easily be created using the information collection feature. This mechanism
makes it possible to collect input using the native content model of eZ publish. The following
example shows how to create a contact form:

1. Create a new class called ”Feedback” consisting of the following attributes:

Name Identifier Datatype Information collector
Name name Text line No
Subject subject Text line Yes
Message message Text block Yes

 The required flag should be set for all attributes.

2. Create an object using the ”Feedback” class in the content root folder. You’ll only need to
fill out the ”name” field, for example ”My feedback form”.

3. Create a new template override that will load a custom template called feedback.tpl
whenever a ”Feedback” object is viewed. The following example shows the lines that
should be added to the override.ini.append.php of the siteaccess.

 [feedback]
 Source=node/view/full.tpl
 MatchFile=feedback.tpl
 Subdir=templates
 Match[class_identifier]=feedback

4. Create the override template (feedback.tpl) and place it inside the templates/
override/ directory of the design used by the siteaccess.

5. Add the following code to the newly created template:

 {include uri=’design:content/
 collectedinfo_validation.tpl’}

 <h1>{$node.name}</h1>

 <form method=”post”
 target={‘content/action’|ezurl}>

 <label>Subject:</label>
 {attribute_view_gui
 attribute=$node.object.data_map.subject}

 <label>Message:</label>
 {attribute_view_gui
 attribute=$node.object.data_map.message}

 <input type=”submit”

148 Chapter 4. Common solutions 149

 name=”ActionCollectInformation”
 value=”Submit” />
 <input type=”hidden” name=”ContentNodeID”
 value=”{$node.node_id}” />
 <input type=”hidden” name=”ContentObjectID”
 value=”{$node.object.id}” />
 <input type=”hidden” name=”ViewMode”
 value=”full” />

 </form>

6. Clear the caches.

7. Attempt to view the feedback node by requesting its URL (http://www.example.com/
my_feedback_form). The override template will be displayed and it should therefore
be possible to submit information to the system. The submitted data will not result in the
creation of new objects or nodes, so it will not become a part of the content node tree. How-
ever, the information can be viewed and administered using a dedicated interface labeled
Collected information. This interface can be found in the Setup section of the Adminis-
tration Interface.

Adding a button that creates a new node
The following example shows how a button that triggers the creation of a new object (and a
new node) can be added.

<form method=”post”
 action={‘/content/action’|ezurl}>
 <input type=”submit” name=”NewButton”
 value=”Create a new folder” />
 <input type=”hidden” name=”ClassID”
 value=”1” />
 <input type=”hidden” name=”NodeID”
 value=”2” />
</form>

It is necessary to tell eZ publish what kind of object / node should be created. In addition, the
desired location within the content node tree must be specified. This can be achieved by making
use of two hidden input fields: ClassID and NodeID. The ClassID must be the ID number
of the class from which you want to create an object. In the example above the class ID is set to
”1”, which means that the button will create a folder. The NodeID must be a valid ID number
of an existing node under which the new node should be created (in other words, this number
actually denotes the parent node). In the example above, the node ID is set to ”2”, which means
that the new node will be created in the content root folder.

Adding a button that creates a new node

150 Chapter 4. Common solutions 151

Permissions
Anonymous users will not be able to create new nodes unless the default permission settings
are changed. In order to create new nodes, a user needs to have access to the create and ed-
it functions of the content module. Both functions provide several interfaces which make
it possible to limit the privileges to specific locations, certain classes and so on.

The access fetch function can be used to figure out whether the current user has access (read,
edit, create, remove, etc.) to a given content object or content node. The optional parameters
contentclass_id and parent_content_class_id can be used to limit the results.
These parameters are compatible with both class ID numbers and class identifier strings. The
contentobject parameter is compatible with both nodes and objects. The function sup-
ports checking for the following access methods:

n bookmark
n create
n edit
n move
n read
n remove
n pdf
n restore
n translate
n versionread

When checking ”create” access, if the contentclass_id is not specified, the function will
return TRUE as long as there is a create access for the given object. However, the user might
still not be allowed to create the specific class because of other restrictions. The following ex-
ample demonstrates how to check whether the current user can create a folder below the cur-
rent node.

{def $test=fetch(content, access,
 hash(access, create,
 contentobject, $node,
 contentclass_id, ‘folder’))}
{if $test}
 You can create a folder below
 ”{$node.name|wash}”.
{else}
 You cannot create a folder below
 ”{$node.name|wash}”.
{/if}

150 Chapter 4. Common solutions 151

The edit template
Every time a node is created or edited, eZ publish will attempt to load the edit template
(design/example/templates/content/edit.tpl). If it doesn’t find it in the cur-
rent design and if there are no override rules, the default / standard edit template will be used.
The following list explains the process of creating a custom edit template for a class called
”Member”.

1. Copy the standard edit template to the template override directory of the custom design.

2. Rename the template (for example member_edit.tpl).

3. Edit the file; strip away the unnecessary parts and modify it so that it matches the rest of the
site.

4. Create a new template override rule that will load a custom template called member_
edit.tpl when a ”member” object is edited. The following example shows the lines that
should be added to the override.ini.append.php of the siteaccess.

 [member_edit]
 Source=content/edit.tpl
 MatchFile=member_edit.tpl
 Subdir=templates
 Match[class_identifier]=member

5. Clear the caches and verify that the custom edit template is used and that it works correctly.

Disabling the discard confirmation dialog

Whenever the user edits something and cancels the process, the system will display a confirma-
tion dialog. In some cases, this dialog may be unnecessary and annoying. It can be easily dis-
abled by adding a hidden variable called DiscardConfirm within the form of the edit tem-
plate. The following example shows how this variable can be used to turn off the confirmation
dialog.

<input type=”hidden” name=”DiscardConfirm”
 value=”0” />

Automatic redirection after editing
It is possible to instruct the system to redirect the user to a specific page when editing is done.
This can be achieved by adding a hidden variable called RedirectAfterPublish to the
form that takes care of creating new nodes. The following example shows how the users can
be redirected to ”/company/about” after they’re done with editing. Note that the specified URL
must not be piped through the ezurl operator; the system will automatically take care of gen-
erating the correct URL.

<input type=”hidden” name=”RedirectAfterPublish”
 value=”/company/about” />

The edit template

152 Chapter 4. Common solutions 153

Adding an edit button
The following template code shows how a button that triggers the editing of an existing node
can be added. The example assumes that the code is placed within a node view template (hence
the use of the $node variable - if not, the node must be manually fetched and assigned to the
variable). Note that both the node ID and the object ID must be provided.

<form method=”post”
 action={‘/content/action’|ezurl}>
 <input type=”hidden” name=”ContentNodeID”
 value=”{$node.node_id}” />
 <input type=”hidden” name=”ContentObjectID”
 value=”{$node.object_id}” />
 <input type=”submit” name=”EditButton”
 value=”Edit” />
</form>

The edit action can also be triggered by using a hyperlink instead of a submit button in a form.
The link must contain the ID number of the target object. The following example shows how
this can be done.

<a href={concat(‘/content/edit/’,
 $node.object.id)|ezurl}>Edit

The following example shows how to check whether the current user has sufficient permissions
to edit an object.

{if $node.object.can_edit}
 {* Display edit button/link. *}
{else}
 {* Display permission denied message. *}
{/if}

Adding a remove button
The following template code shows how a button that triggers the removal of an existing node
can be added. The example assumes that the code is placed within a node view template (hence
the use of the $node variable). Note that both the node ID and object ID must be provided.

<form method=”post”
 action={‘/content/action’|ezurl}>
 <input type=”hidden” name=”ContentNodeID”
 value=”{$node.node_id}” />
 <input type=”hidden” name=”ContentObjectID”
 value=”{$node.object_id}” />
 <input type=”submit” name=”ActionRemove”
 value=”Remove” />
</form>

152 Chapter 4. Common solutions 153

The following example shows how to check whether the current user has sufficient permissions
to remove an object.

{if $node.object.can_remove}
 {* Display remove button. *}
{else}
 {* Display permission denied message. *}
{/if}

Printer-friendly and alternate output
Printer-friendly output may be achieved in several ways. One of the most commonly used
methods is to create an alternate, stripped-down version of the pagelayout. This alternate ver-
sion should not contain elements that would waste paper and ink (for example images, men-
us, side bars, etc.). The pagelayout can be changed using the set view of the layout mod-
ule. This view takes two parameters. The first parameter must be the name of the desired layout
(for example, ”print”). The second parameter must be a valid eZ publish URL (either an exist-
ing virtual URL or a system URL).

Setting up alternate layouts
Alternate layouts must be specified in a configuration override for layout.ini. The default
configuration defines three alternate layouts: ”fullscreen”, ”popup” and ”print”. The following
table shows the names and templates that will be used.

Name Template
fullscreen fullscreen_pagelayout.tpl

popup popup_pagelayout.tpl

print print_pagelayout.tpl

If eZ publish is instructed to use the ”print” layout to render a page, it will attempt to use a tem-
plate called print_pagelayout.tpl instead of the default pagelayout.tpl. The fol-
lowing example shows how to create a link within the original pagelayout which will generate
the page that is currently being viewed wrapped inside print_pagelayout.tpl.

<a href={concat(‘/layout/set/print/’,
 $requested_uri_string)|ezurl}>
Printerfriendly version

Although the alternate layouts defined in layout.ini exist in the standard design, it is com-
mon practice to create a custom version for the design being used.

 Alternate designs

In addition to the alternate layout templates, it is possible to use a different design when an al-
ternate pagelayout is triggered. This can be achieved by using the SiteDesign directive
within a configuration override for layout.ini. The following example shows a configura-

Printer-friendly and alternate output

154 Chapter 4. Common solutions 155

tion block that will use my_layout.tpl and a design called ”tiny”. The name of the combi-
nation (which will have to be provided as the first parameter to the set view) is ”example”.

[example]
SiteDesign=tiny
PageLayout=my_layout.tpl

Note that it is possible to provide alternate layouts using only CSS. However, that is beyond
the scope of this book.

 PDF export of nodes
It is possible to generate a PDF file based on the contents of a node. This can be achieved by ac-
cessing the pdf view of the content module. The view takes one parameter, which must be
the ID number of the target node. The following example shows how to create a link that will
generate a PDF version of the node being viewed. Note that the example uses the $node var-
iable. This means that the link must either be placed in a node view template or the node must
be manually fetched and assigned to the variable.

<a href={concat(‘/content/pdf/’,
 $node.node_id)|ezurl}>
PDF version

PDF generation is based on the same template system used for rendering HTML pages. When
a link similar to the one outlined in the example above is requested, eZ publish will use the fol-
lowing template: design/standard/templates/node/view/pdf.tpl. As with all
other templates, this template can be copied, modified and overridden using the template over-
ride system. PDF output heavily depends on a collection of functions that can be accessed using
the pdf operator. Refer to the online documentation of this operator for more information.

Using the { node_view_gui ...} function
The node_view_gui function makes it possible to view a node using the template system.
It allows the developer to render a node using a specific view in any template, regardless of the
requested URL. This function proves to be very useful in some scenarios. For example, let’s
say we want to create a big list of nodes where we wish to output the name of the node and an
attribute called ”properties”. The following example show how this could be done.

{def $nodeArray=fetch(content, list,
 hash(parent_node_id, 2))}

{foreach $nodeArray as $item}

 {$item.name|wash} -
 {$item.object.data_map.properties.content}

 <hr />

{/foreach}

154 Chapter 4. Common solutions 155

The code can be added to any template without having to create template overrides. But what
if there are different types of nodes? A list could contain different products where each product
has a dissimilar set of attributes. For example, a Webshop that sells furniture, cars and comput-
ers may want to generate an overview that lists the names of all products along with a selected
attribute / property. The following table shows an imaginary set of classes for this scenario.

Class Attributes
Furniture n Name

n Width
n Height
n Depth
n Color
n Weight (selected)
n ...

Car n Name
n Make
n Model
n Top speed (selected)
n Weight
n Color
n ...

Computer n Name
n Speed
n Memory (selected)
n Hard drive
n Graphics card
n Sound chip
n ...

According to the table, when listing furniture, we want to output the weight; when listing cars,
we want to output the top speed, and so on. The previous code example will not be able to take
care of this unless some sort of conditional checking is introduced. That may be fine for small
and simple scenarios, but it will not be an optimal solution. Fortunately, this simple yet very
common and sometimes challenging problem can be easily solved by using the node_view_
gui function and override templates.
We will need to change the loop code, add three override rules and three new templates. The over-
ride rules must trigger when certain types of nodes are displayed using a specific view. In this ex-
ample we will use the line view, which means that the override rules will have to trigger when
the system attempts to display one of the product nodes using .../node/view/line.tpl.
The following code shows a modified version of the loop from the previous example.
{def $nodeArray=fetch(content, list,
 hash(parent_node_id, 2))}

{foreach $nodeArray as $item}

 {node_view_gui content_node=$item view=’line’}

 <hr />

{/foreach}

Using the {node_view_gui ...} function

156 Chapter 4. Common solutions 157

The next step is to set up the override rules so that the system will use different templates when
the different types of nodes are viewed. The following example shows the necessary lines that
should be added to the override.ini.append.php of the siteaccess.

[furniture_line]
Source=node/view/line.tpl
MatchFile=furniture_line.tpl
Subdir=templates
Match[class_identifier]=furniture

[car_line]
Source=node/view/line.tpl
MatchFile=car_line.tpl
Subdir=templates
Match[class_identifier]=car

[computer_line]
Source=node/view/line.tpl
MatchFile=computer_line.tpl
Subdir=templates
Match[class_identifier]=computer

In the final step, the templates are created. According to the rules above, we need to create three
override templates:

n furniture_line.tpl

n car_line.tpl

n computer_line.tpl

Each template needs to output the name of the node along with the selected attribute. The fol-
lowing example shows the code for the furniture_line.tpl template; it outputs the
name of the node and the weight of the furniture.

{$node.name|wash}

{attribute_view_gui
 attribute=$node.object.data_map.weight}

The car_line.tpl template should output the ”top speed” attribute:

{$node.name|wash}

{attribute_view_gui
 attribute=$node.object.data_map.top_speed}

The computer_line.tpl template needs to output the ”memory” attribute:

{$node.name|wash}

{attribute_view_gui
 attribute=$node.object.data_map.memory}

156 Chapter 4. Common solutions 157

Once these steps are completed and the cache is cleared, we have a clean, scalable and easy-
to-maintain solution for generating a product list. Although this example may seem small and
simple, it perfectly demonstrates a flexible concept that may be used to solve both common and
intricate template tasks.

Using the ”tip a friend” feature
The content module contains a view called tipafriend. This view provides an inter-
face that can be used to notify a person through e-mail about content stored in a node. It can
be called up by a link which requests the view, along with the ID number of the target node.
When accessed, a simple form requesting the user’s name, e-mail address, the recipient’s email
address and an optional comment will appear. When the form is submitted, the system will
send out an e-mail to the specified address containing an explanation (why, from where and
by whom the e-mail was sent) along with a link to the target node. The following list of steps
shows how this feature can be used.

1. Create a link which requests the tipafriend view along with the ID number of the tar-
get node. Example:

 <a href={concat(‘/content/tipafriend/’,
 $node.node_id)|ezurl}>
 Tip a friend

2. Optional: copy the design/standard/templates/content/tipafriend.tpl
file to the design being used. This template contains both the form and the messages that
appear when the form is submitted. Modify the template so that it matches the site.

3. Optional: copy the design/standard/templates/content/tipafriendmail.tpl
file to the design being used. This template dictates the overall look of the tipa-friend e-
mails that will be sent out by the system. Modify the template to suit your needs.

4. Clear the caches and test the solution.

Wrapping PHP functions
It is possible to wrap simple PHP functions and use them in templates without having to code
an actual template operator. The system allows direct wrapping of functions that require either
one parameter or no parameters. In other words, it is not possible to wrap PHP functions that
depend on input based on more than one parameter. Function wrapping must be set up in a con-
figuration override for template.ini. The following example shows a setup that introduc-
es a new template operator called ”myoperator”, which will be a wrapper for soundex, a PHP
function that calculates the soundex key of a string.

[PHP]
PHPOperatorList[myoperator]=soundex

The PHP soundex function expects a string as a parameter. Its job is to calculate the soundex
key of a word. Words that are pronounced similarly produce the same key. Soundex keys can,

Using the ”tip a friend” feature

158 Chapter 4. Common solutions 159

for example, be used to simplify searches in cases where the user doesn’t remember the correct
spelling of a word. The PHP function returns a four-character string that starts with a letter and
ends with digits. Note that soundex keys are optimized for English pronunciation. The follow-
ing example shows the usage of the newly introduced template operator in a template:

{‘Knuth’|myoperator}

The example above will return ”K350”, which is the soundex key for ”Knuth”.

Custom HTTP meta tags
Although the specification of meta tags does not define a set of legal meta data properties, it is
a common practice to include generic information such as the name of the author, description
of the site, copyright notices, keywords, etc. This can be done by using the MetaDataAr-
ray[...] directive in a configuration override for site.ini. The configuration is usually
done on a siteaccess basis.

Good meta information leads to higher page ranking, yielding higher visibility with search en-
gines. eZ publish will output the name and value of the specified tags when the standard page_
head.tpl template is included in the pagelayout. If no custom tags are defined, the default
settings will be used. The following example shows a meta tag setup for an imaginary site.

[SiteSettings]
MetaDataArray[author]=Miles Bennet Dyson
MetaDataArray[copyright]=Cyberdyne Systems
MetaDataArray[description]=Artificial Intelligence
MetaDataArray[keywords]=artificial intelligence,
 neural networks
...

Disabling access to modules and views
A typical eZ publish site uses only a small portion of all the functionality provided by the sys-
tem. One of the most basic and effective ways of preventing possible attacks, misuse, infor-
mation leakage, etc. is to disable unused modules and / or views. The more information a per-
petrator is able to collect, the more likely it is that the site will be compromised. For example,
the about view of the ezinfo module reveals that the web site is running eZ publish, along
with the version number. This information is available for all visitors. Someone may find it
handy to inject a possible exploit that works with the unpatched version which the site is cur-
rently running.

Disabling functionality is typically one of the last steps made before going live. The fol-
lowing example shows how different modules and views can be disabled from within the
site.ini.append.php configuration file of a siteaccess.

[SiteAccessRules]
Rules[]=access;disable
Rules[]=module;class

158 Chapter 4. Common solutions 159

Rules[]=module;ezinfo
Rules[]=module;form
Rules[]=module;pdf
Rules[]=module;content/tipafriend
etc.

The example above disables access to the following modules: class, ezinfo, form and
pdf. In addition, the last line demonstrates how access to a single view can be disabled (in this
case, the tipafriend view of the content module). Access to the modules in the example
above (and many others) is typically not needed for a public site. Although eZ publish is built
with security in mind and access is controlled by the permission system, it is still a good idea
to totally close down unused modules - better to be safe than sorry.

 Debugging a live site
Sometimes it is necessary to debug a site while it is being used by hundreds of visitors. Turn-
ing on the debug output while the site is live may not be smart. It can disrupt a nice design,
scare the visitors (and owners) and it may even reveal sensitive data that might be used by a po-
tential cracker. Fortunately it is possible to instruct eZ publish to only display the debug out-
put if the visitor is coming from a specific IP address. The following example shows how IP
based debug output can be used to debug a live site from a computer (or a gateway/NAT) be-
hind ”62.70.12.230”. The lines must be added to the configuration override of site.ini for
the public siteaccess.

[DebugSettings]
DebugOutput=enabled
Debug=inline
DebugByIP=enabled
DebugIPList[]
DebugIPList[]=62.70.12.230

Note that it is possible to add several IP addresses. This can be done by providing more Debu
gIPList[]=xxx.yyy.zzz.www lines in the configuration file. Be aware that the system
will spend more time generating a page that contains debug information. However, if debug-
ging is limited to a small set of IP addresses, it will not slow down every page, only the ones
requested by hosts hiding behind the specified IPs. In other words, it is safe to leave the master
debug switch on as long as the debug-by-ip feature is used.

Backing up and restoring a site
An eZ publish site stores information using two separate storage solutions: a database and the
filesystem. It is important to understand that a backup must include both a dump of the database
and a copy of the eZ publish directory. If either one of them is missing, the backup will most
likely be useless (worst case scenario).

A common way of creating a backup is by dumping the database to a file inside the eZ publish
directory, then creating a compressed version of the entire thing. It is a good idea to exclude the

Debugging a live site

160 Chapter 4. Common solutions 161

cache files. Including them will not only result in unnecessarily large backup files, it will also
significantly slow down the backup process. Copying the files without doing any packaging or
compression is not a good idea. This is because eZ publish consists of a big and deep directory
tree with long filenames. Some filesystems (for example, ISO9660 for compact discs) are una-
ble to store the structure, and hence the backup could be rendered useless.

Dumping the database
The following example shows how a database called ”example” can be dumped to a file called
backup.sql using a command line tool that comes with MySQL.

$ mysqldump -u root --add-drop-table \
 example > backup.sql

Note that the username ”root” may have to be changed to the name of the user which has access
to the eZ publish database. The --add-drop-table parameter will add some extra queries
at the beginning of the dump. These statements will get rid of all tables when the dump is put
back into a server where the database already exists. This will prevent problems with conflict-
ing tables (no ”table already exists” messages will be displayed) because the script starts by
dropping the existing tables before it attempts to create new ones.

Backing up the eZ publish directory
As mentioned earlier, the eZ publish directory is huge. Relying on raw copies of it is not con-
sidered to be a safe approach. A better solution is to create an archived, compressed version of
it (for example tar, zip, rar, etc.). The following example shows how an eZ publish directory
called ”my_site” can be archived and compressed into a single file called backup.tar.gz
using the tar utility on a Linux / UNIX system.

$ tar zcf backup.tar.gz my_site

 Restoring an archived eZ publish directory
The previous example showed how an eZ publish directory could be archived. This is how the
archive (called backup.tar.gz) can be unpacked and restored:

$ tar zxf backup.tar.gz

The verbose parameter has been deliberately omitted from the above example. When the
verbose option is used, the console will be filled with hundreds of lines showing the files that
are being processed. This can make it difficult to notice and isolate individual issues.

Restoring an eZ publish database
The following example shows how a database dump called backup.sql can be restored to a
database called ”example” using one of the MySQL command line tools.

$ mysql -u root example < backup.sql

160 Chapter 4. Common solutions 161

Chapter 5. Extensions
This chapter provides an introduction to extending eZ publish. It is targeted at developers who
want to add custom functionality to the system. Because extensions are written in the PHP pro-
gramming language, some familiarity with programming concepts and practices is required.
After reading this chapter, a moderately experienced programmer will understand the poten-
tial of the extension system, and should be able to create eZ publish extensions. The following
topics are covered:

n The purpose and concepts of the extension system
n The extension directory structure
n How to enable and disable extensions
n How to create a design extension
n How to create a custom datatype
n How to create a custom template operator
n How to create a custom workflow event

Extension overview
The eZ publish architecture is designed to support the use of custom code that extends the func-
tionality of the system without modifying the original distribution. Separating the core and cus-
tom functionality makes the system easy to upgrade and maintain and enables programmers to
share their work with other eZ publish users without having to redistribute the entire system.

Custom code, design, translations, etc. are added via extensions. An extension is a set of files
containing PHP code (and other custom components). The extension system can be used to add
custom components such as:

n Datatypes
n Designs
n Workflow events
n Modules
n Content actions
n Translations
n Template operators

Setting up a virtual host-based solution

162 Chapter 5. Extensions 163

Extensions are used whenever there is a requirement to add custom functionality to eZ publish.
For example, if special data for which there is no built-in datatype needs to be stored, a new da-
tatype should be added as an extension. As another example, a custom workflow event could
be created that notifies an external system when an object is published. Extensions may also be
used to override existing eZ publish functionality, for example to tailor an aspect of the system
to your exact requirements. Regardless of the nature of the extension, the primary advantage
of extensions is that none of the original eZ publish files are modified. All custom code is com-
pletely separated from the rest of the system.

 Directory structure
All the files that make up an extension are stored in the extension/ directory within the
eZ publish installation. There is no limit on the number of extensions that can be used with eZ
publish. Within the extension/ directory, each individual extension is stored in its own sub-
directory. The name of a subdirectory functions as the name of an extension. The following ex-
ample shows three extensions within the main extension directory: ”myExtension”, ”yourEx-
tension” and ”anotherExtension”.
ezpublish
|
+--extension
 |
 +--myExtension
 |
 +--yourExtension
 |
 +--anotherExtension

An extension’s directory can contain the following subdirectories:

Subdirectory Description
actions/ Actions for forms.

datatypes/ Datatypes.

design/ Designs (design-related files).

eventtypes/ Workflow events.

modules/ Modules (modules, views, fetch functions, etc.).

settings/ Configuration settings that belong to the extension. This directory is required
unless the extension only provides a template operator.

translations/ Translations.

Extension activation
After installing an extension, the site must be configured to use it. This configuration can be
done on a siteaccess or on a global basis. (Unless there are specific reasons to do otherwise, the
most common practice is to allow all siteaccesses to use all extensions.) The following exam-
ple shows the configuration override within site.ini.append.php.

162 Chapter 5. Extensions 163

[ExtensionSettings]
ActiveExtensions[]=myextension
ActiveExtensions[]=yourextension

These lines instruct the system to use two extensions called ”myextension” and ”yourexten-
sion”.

Design extensions
The design directory in an extension that can contain:

n Custom design for a site
n Design related to the extension itself (workflow templates, datatype templates, etc.)
n Additional design for an existing design (such as replacement templates for the stand-

ard, admin and other designs)

The structure of an extension’s design directory follows the same layout as the default design
directory in the eZ publish installation. The design directory must contain a subdirectory for
each design that it provides. The names of the subdirectories are used as the design names. The
design subdirectories may contain images, templates, stylesheets, etc., in the same manner as a
design in the main design directory.

As mentioned above, you can create an extension for an existing design. For example, the di-
rectory structure for an extension that extends the ”standard” design would be: extension/
example/design/standard/ (assuming that the name of the extension itself is ”exam-
ple”).

Creating a design extension
The following steps show how to create a design extension. The name of the extension will be
”myextension” and the name of the design will be ”example”. Note that the designs provided
by an extension will be ignored unless the system is instructed to use them (as described in the
”Extension Activation” section above).

1. Create a subdirectory called myextension/ in the extension/ directory.

2. Create the extension’s directory structure:
n Create a subdirectory called design/ in the myextension/ directory. This direc-

tory will contain all the designs provided by the extension.
n Create a subdirectory called example/ in the design/ directory. The structure of

the example/ directory must follow the standard design subdirectory structure (it can
ave subdirectories containing templates, CSS files, images, etc.).

n Create a subdirectory called settings/ in the myextension/ directory. This di-
rectory will contain the settings for the ”myextension” extension.

3. Create a file called design.ini.append.php in the settings/ directory contain-
ing the following lines:

 <?php /*

Design extensions

164 Chapter 5. Extensions 165

 [ExtensionSettings]
 DesignExtensions[]=myextension

 */ ?>

 This instructs eZ publish to use the designs provided by ”myextension”. The designs will
be enabled when the extension itself is activated.

4. Activate the extension either globally or for a siteaccess by adding the following lines to a
configuration override for site.ini:

 [ExtensionSettings]
 ActiveExtensions[]=myextension

 Datatype extension
Although the default datatypes are sufficient for most sites, custom datatypes are one of the
most powerful extensions that can be added to eZ publish. They make it possible to store data
differently than the built-in datatypes and will thus extend the content management capabilities
of the system. One of the most important properties of a datatype is the graphical user interface
and the validation logic that is used during input.

Whenever you need to store and validate information in a way that would be cumbersome us-
ing one of the built-in datatypes, a custom datatype should be created. For example, if you need
to validate and store IP addresses, instead of using the built-in ”Text line” datatype you should
develop a custom datatype that provides four input fields and data validation. This enhances the
input process and eliminates the risk of storing invalid information.

Creating a new datatype
To create an extension called ”mydatatype”:

1. Create a directory called mydatatype/ beneath the extension/ directory.

2. Create the extension’s directory structure:
n Create a subdirectory called settings/ in the mydatatype/ directory. This di-

rectory will contain the settings for the ”mydatatype” extension.
n Create a subdirectory called design/ in the mydatatype/ directory. This directo-

ry will contain a design for the datatype’s templates.
n Create a subdirectory called datatypes/ in the mydatatype/ directory. This will

store the datatypes provided by the extension.
n Create a subdirectory called ezexample/ in the datatypes/ directory. This will

contain the PHP code for the datatype.

3. Copy an existing datatype’s PHP file into the ezexample/ directory. For example, copy
kernel/classes/datatypes/ezisbn/ezisbntype.php. Rename the file to
ezexampletype.php. The filename must end with type.php. (Note that you can use
the rapid application development (RAD) tools in the Administration Interface to generate
a framework for a new datatype.)

164 Chapter 5. Extensions 165

4. Create program code for the new datatype in ezexampletype.php.

5. Create the view and edit templates for the datatype. These are required. Example:
extension/mydatatype/design/standard/templates/content/
datatype/view/ezexample.tpl and extension/mydatatype/design/
standard/templates/ content/datatype/edit/ezexample.tpl.

6. Tell eZ publish that it should use the designs that are provided by the extension. Do this
by creating a design.ini.append.php file in the settings/ directory. Make sure
that it contains the following lines:

 <?php /*

 [ExtensionSettings]
 DesignExtensions[]=mydatatype

 */ ?>

7. Tell eZ publish that it should use the datatype that is provided by the extension. Do this
by creating a file called content.ini.append.php in the settings/ directory.
Make sure that it contains the following lines:

 <?php /*

 [DataTypeSettings]
 ExtensionDirectories[]=mydatatype
 AvailableDatatypes[]=ezexample

 */ ?>

8. Activate the extension for a siteaccess or globally by adding the following lines to a con-
figuration override for site.ini:

 [ExtensionSettings]
 ActiveExtensions[]=mydatatype

Programming the datatype
The following example shows the framework for a datatype.
<?php

include_once(‘/kernel/classes/ezdatatype.php’);

define(‘EZ_DATATYPESTRING_EXAMPLE’, ‘ezexample’);

class eZExampleType extends eZDatatype

{

...

}

eZDataType::register(EZ_DATATYPESTRING_EXAMPLE,
 ‘ezexampletype’);

?>

Programming the datatype

166 Chapter 5. Extensions 167

The example shows the PHP file which must take care of the following:
n Include the file containing the superclass.
n Define a unique ID for the datatype.
n Provide a class that extends eZDataType.
n Register the datatype.

Functions

At a minimum, the following set of functions should be provided:
n A constructor
n validateObjectAttributeHTTPInput(...)

n fetchObjectAttributeHTTPInput(...)

n storeObjectAttribute(...)

n objectAttributeContent(...)

n hasObjectAttributeContent(...)

n isIndexable(...)

n metaData(...)

n title(...)

The constructor

The constructor must run the constructor of the superclass using the unique ID and the actual
name of the datatype as parameters. The name will be used in various interfaces in the Admin-
istration Interface. In addition, the constructor must reveal whether the datatype supports serial-
ization or not. A datatype that supports serialization will allow export and import of a class or
of actual content that uses the datatype. (The serialization map must also be provided.)

validateObjectAttributeHTTPInput(...)

This function validates the input data. For example, if the datatype is used for storing credit
card numbers, this function must determine whether the number provided is valid. If the data
is valid, the function must return EZ_INPUT_VALIDATOR_STATE_ACCEPTED. If the data
is invalid, the function must return EZ_INPUT_VALIDATOR_STATE_INVALID along with
a validation error message.

The http parameter holds the class object eZHTTPTool, which can be used to extract and
check the posted input. The base parameter holds the base name of the HTTP variable (usu-
ally ContentObjectAttribute). The contentObjectAttribute parameter holds
the attribute object itself.

fetchObjectAttributeHTTPInput(...)

This function must get the input data and store it in the data instance. The data may be stored ei-
ther as text (data_text), integer (data_int) or a floating-point value (data_float). The pa-
rameters are the same as for the validateObjectAttributeHTTPInput(...) func-
tion.

166 Chapter 5. Extensions 167

storeObjectAttributeHTTPInput(...)

This function must be used if fetchObjectAttributeHTTPInput(...) does not ful-
ly handle storing the input data.

objectAttributeContent(...)

This function must return the content stored by the datatype. The contentObjectAttrib-
ute parameter gives access to the attribute object.

hasObjectAttributeContent(...)

This function must return either TRUE or FALSE depending on whether the datatype has stored
any content or not. The contentObjectAttribute parameter gives access to the attribute
object.

isIndexable(...)

This function must return either TRUE or FALSE depending on whether the datatype supports
search indexing or not.

metaData(...)

This function must return the metadata that should be used when the attribute is being indexed
by the search engine.

title(...)

This function must generate and return a short string which is based on the input data. The
string will be used to set the object name if the object’s name pattern includes an attribute that
uses the datatype.

Class attributes

If the datatype handles class attribute definitions (for example, a default value, input con-
straints, etc.), it must provide additional functions and two templates: one for class editing and
one for class viewing. One or more of the following functions must be implemented:

n storeClassAttribute(...)

n validateClassAttributeHTTPInput(...)

n fixupClassAttributeHTTPInput(...)

n fetchClassAttributeHTTPInput(...)

Refer to the superclass for more information about these functions. The class templates must
be placed in the templates/class/datatypes/edit/ and templates/class/
datatypes/view/ directories of the design provided by the extension.

 Template operator extension
The built-in template operators offer a wide range of functionality. While these operators are
sufficient for common template tasks, custom template operator extensions are required for ad-
vanced purposes. For example, a template operator extension could be created for special text

Template operator extension

168 Chapter 5. Extensions 169

processing tasks. In such cases, the best solution is to create a custom template operator as an
extension. Custom template operators function in the same way as the builtin operators. Once
a custom operator is added, it can be used from within any template (assuming that the opera-
tor is available for all siteaccesses). The following section describes how to create template op-
erator extensions.

Creating new template operators
To create a template operator extension called ”myoperators”:

1. Create a directory called myoperators/ in the extension/ directory.

2. Create the extension’s directory structure:
n Create a subdirectory called settings/ in the myoperators/ directory. This di-

rectory will contain the settings for the ”myoperators” extension.
n Create a subdirectory called autoloads/ in the myoperators/ directory. This

directory will contain the code for the operators provided by the extension.

3. Create a new file called eztemplateautoload.php inside the autoloads/ direc-
tory. Make sure that it contains the following lines:

 <?php

 $eZTemplateOperatorArray = array();

 $eZTemplateOperatorArray[] =
 array(‘script’ => ‘extension/
 myoperators/autoloads/myoperators.php’,
 ‘class’ => ‘MyOperators’,
 ‘operator_names’ => array
 (‘operatorOne’,
 ‘operatorTwo’));

 ?>

 This file informs eZ publish about the names and the locations of the new operators. In this
example we have two operators called ”operatorOne” and ”operatorTwo”. They will be de-
fined in a class called ”MyOperators” located in myoperators.php.

4. Create a new file inside the autoloads/ directory that will contain the operator logic.
In this example, we will create a file called myoperators.php. Enter code for the new
operator(s). (Refer to the next section for more information.)

5. Create a site.ini.append.php file in the settings/ directory of the extension.
This tells eZ publish that it should use the operator(s) provided by the extension. The file
should contain the following lines:

 <?php /*

 [TemplateSettings]
 ExtensionAutoloadPath[]=myoperators

 */ ?>

168 Chapter 5. Extensions 169

6. Activate the extension for a siteaccess or globally by adding the following lines to a con-
figuration override for site.ini:

 [ExtensionSettings]
 ActiveExtensions[]=myoperators

Programming the operators
The code for the operators must be stored in myoperators.php (this is the file that was
specified in eztemplateautoload.php). The following example shows how the skeleton
code for the two operators (”operatorOne”) and (”operatorTwo”) should be set up.

<?php

class MyOperators
{
 // Constructor.
 function MyOperators()
 {
 $this->Operators = array
 (‘operatorOne’, ‘operatorTwo’);
 }

 // Returns the operators that
 // are provided by this class.
 function &operatorList()
 {
 return $this->Operators;
 }

 // This is needed for classes that
 // provide several operators.
 function namedParameterPerOperator()
 {
 return true;
 }
 // Returns an array of the named parameters.
 function namedParameterList()
 {
 return array(‘operatorOne’ => array(),
 ‘operatorTwo’ => array());
 }

 // This function provides the main logic.
 function modify(&$tpl,
 &$operatorName,
 &$operatorParameters,
 &$rootNamespace,
 &$currentNamespace,

Programming the operators

170 Chapter 5. Extensions 171

 &$operatorValue,
 &$namedParameters)
 {
 switch ($operatorName)
 {
 case ‘operatorOne’:
 {
 $operatorValue = $this->doSomething
 ($operatorValue);
 } break;

 case ‘operatorTwo’:
 {
 $operatorValue = $this->
 doSomethingElse
 ($operatorValue);
 } break;
 }
 }
 // Custom function #1, used by ”operatorOne”.
 function doSomething($input)
 {
 // Process the input and
 // return some output.
 }
 // Custom function #2, used by ”operatorTwo”.
 function doSomethingElse($input)
 {
 // Process the input and
 // return some output.
 }

 var $Operators;

}

?>

Note that this example only shows how the framework should be set up. You’ll have to add ad-
ditional code to implement the desired functionality.

Parameter handling
The operators in the previous example do not support any parameters except the input parame-
ter provided through a pipe. Suppose that ”operatorOne” needed two additional parameters: the
first parameter is required and the default value of the second parameter is ”MP3”. To imple-
ment these parameters, we change the namedParameterList function:
function namedParameterList()
{

170 Chapter 5. Extensions 171

 return array(
 ‘operatorOne’ => array(
 ‘first_param’ =>
 array(‘type’ => ‘string’,
 ‘required => ‘true’,
 ‘default’ => ‘’),

 ‘second_param’ =>
 array(‘type’ => ‘string’,
 ‘required => ‘false’,
 ‘default’ => ‘MP3’)),

 ‘operatorTwo’ => array());
}

The parameters will be available in the modify function and can be accessed in the following
way:

$one = $namedParameters[‘first_param’];
$two = $namedParameters[‘second_param’];

These parameters should of course be sent to the function that contains the code for the ”oper-
atorOne” operator, in this case the ”doSomething(...)” function.

 Workflow extensions
Sometimes it is useful to create custom workflow events that perform miscellaneous tasks. The
tasks may be either interactive or non-interactive. Custom events can, for example, be used to
manipulate information stored in the content node tree, to communicate with remote servers, to
process user input, to carry out maintenance tasks, and so on.

A workflow consists of one or more events. The events are processed in the sequence they
were defined when the workflow was created. A typical event executes some code and then ter-
minates, allowing the next event in the sequence to be processed. This is the most usual case.
However, an event may repeat itself, block the workflow while waiting for something to happen
or even abort the entire workflow. The behavior of an event is controlled by a status code.

Status codes
Regardless of what an event does, it must always return a status code at the end. The status code
determines whether the event should be repeated, show a template, redirect the user, abort the
entire workflow or allow the next event to be processed. The following table shows the avail-
able status codes.

Status Description
EZ_WORKFLOW_TYPE_STATUS
_ACCEPTED

This status can be returned when an event has finished and
there is nothing more to be done. The system will process the
next event of the workflow. If no other events exist, the work-
flow will finish.

Workflow extensions

172 Chapter 5. Extensions 173

Status Description
EZ_WORKFLOW_TYPE_STATUS
_REJECTED

If an unexpected error occurs, an event may terminate its own
execution by returning this status. Currently it is equal to
EZ_WORKFLOW_TYPE_STATUS_WORKFLOW_CAN-
CELLED. The result is that the entire workflow will be termi-
nated and the final status will be CANCELLED.

EZ_WORKFLOW_TYPE_STATUS
_WORKFLOW_CANCELLED

An event may terminate the entire workflow by returning this sta-
tus. The workflow will stop and no other events will be processed.

EZ_WORKFLOW_TYPE_STATUS
_WORKFLOW_DONE

This status allows an event to stop a workflow as if it was com-
pletely finished. In other words, it fools the system into believ-
ing that the workflow has completed without any problems and
thus the operation (which triggered the workflow) will contin-
ue normally.

EZ_WORKFLOW_TYPE_STATUS
_DEFERRED_TO_CRON

This status will cause the workflow to be deferred to the cron-
job. When the cronjob executes, the system will process the
next event of the workflow. If no other events exist, the
workflow will finish.

EZ_WORKFLOW_TYPE_STATUS
_DEFERRED_TO_CRON_REPEAT

This status will cause the workflow to be deferred to the cronjob.
When the cronjob executes, the system will process the same
event which deferred the workflow. In other words, this status
can be used to repeat an event until some condition is matched.

EZ_WORKFLOW_TYPE_STATUS
_FETCH_TEMPLATE

This status will instruct the system to stop processing the work-
flow and show a template. The template should implement a
form containing a submit button. When used, it will allow the
workflow to continue. If the template does not provide a form,
the workflow will still continue the next time it is triggered. In
both cases, eZ publish will start processing the next event of the
workflow. If no other events exist, the workflow will finish.

EZ_WORKFLOW_TYPE_STATUS
_FETCH_TEMPLATE_REPEAT

This status will result in almost the same behavior as EZ_
WORKFLOW_TYPE_STATUS_FETCH_TEMPLATE. The
only difference is that when the workflow continues, the sys-
tem will process the very same event which returned the sta-
tus. In other words, this status can be used to keep displaying a
template until a specific condition occurs.

EZ_WORKFLOW_TYPE_STATUS
_REDIRECT

This status will instruct the system to stop processing the work-
flow and redirect the user to a specified location. For exam-
ple, it can be used when the workflow is triggered in a check-
out process where the user needs to be redirected to an external
payment solution. When finished, the user is then redirected
back to the checkout process and the next event will be proc-
essed. If no other events exist, the workflow will finish.

EZ_WORKFLOW_TYPE_STATUS
_REDIRECT_REPEAT

This status will result in almost the same behavior as EZ_
WORKFLOW_TYPE_STATUS _REDIRECT. The only dif-
ference is that when the workflow continues, the system will
process the same event which returned the status. In other
words, this status can be used to keep redirecting a user until a
specific condition occurs.

172 Chapter 5. Extensions 173

Creating a custom event
To create a custom event via an extension called ”myevent”:

1. Create a new directory called myevent/ in the extension/ directory.
2. Create the extension’s directory structure:

n Create a subdirectory called settings/ in the myevent/ directory. This directo-
ry will contain the settings for the ”myevent” extension.

n Create a subdirectory called design/ in the myevent/ directory. This directory
will contain a design that provides the workflow event’s templates.

n Create a subdirectory called eventtypes/ in the myevent/ directory. Inside
eventtypes/ create a directory called event/.

n Create a subdirectory called ezexample/ in the event/ directory. This will store the
PHP code for the workflow event.

3. Enter program code for the new workflow event in ezexampletype.php (described in
the next section). The file must be stored in the ezexample/ directory.

4. Optional: create the result template for the event if it uses a template. For example: extension/
myevent/design/standard/templates/workflow/eventtype/result/
event_ezexample.tpl

5. Optional: if the event makes use of a template (located within the same extension), create
a design.ini.append.php file in the settings/ directory of the extension. This
will make eZ publish use the designs that are provided by the extension. Ensure that it con-
tains the following lines:

 <?php /*
 [ExtensionSettings]
 DesignExtensions[]=myevent

 */ ?>

6. To configure eZ publish to use the workflow event provided by the extension, create a file
called workflow.ini.append.php in the settings/ directory of the extension. En-
sure that it contains the following lines:

 <?php /*

 [EventSettings]
 ExtensionDirectories[]=myevent
 AvailableEventTypes[]=event_ezexample

 */ ?>

7. Activate the extension for a siteaccess or globally by adding the following lines to a con-
figuration override for site.ini:

 [ExtensionSettings]
 ActiveExtensions[]=myevent

Programming the event
The following example shows the framework for workflow events. This event does nothing
useful, it is used merely to demonstrate how an event should be programmed.

Creating a custom event

174 Chapter 5. Extensions 175

<?php

define(‘EZ_WORKFLOW_TYPE_EXAMPLE_ID’, ‘ezexample’);

class eZExampleType extends eZWorkflowEventType
{
 function eZExampleType()
 {
 $this->eZWorkflowEventType
 (EZ_WORKFLOW_TYPE_EXAMPLE_ID,
 ‘Example’);
 $this->setTriggerTypes(array
 (‘content’ => array(‘read’ =>
 array (‘before’))));
 }
 function execute(&$process, &$event)
 {
 return EZ_WORKFLOW_TYPE_STATUS_ACCEPTED;
 }
}

eZWorkflowEventType::registerType
 (EZ_WORKFLOW_TYPE_EXAMPLE_ID,
 ‘ezexampletype’);

?>

As the example shows, the event starts by defining a unique ID. Every event must provide a
class which extends eZWorkflowEventType. The class must contain two functions: a con-
structor and the actual process function. The constructor must take care of two things:

n Run the constructor of the superclass using the event’s unique ID and name as parameters.
n Show which trigger / operation types the event supports.

In the example above, the event will be made compatible with the ”before” trigger of the read
function in the content module. In other words, it will be possible to trigger this event be-
fore a node is viewed. The system uses this information to determine which workflows can be
connected to the different triggers. If a workflow starts with an event that is compatible with a
specific trigger, it will automatically pop up in the dropdown list for that trigger in the Admin-
istration Interface.
Note that the default workflow.ini file does not enable all connection types. For exam-
ple, the ”content/read” operation must be added manually if it is to be used. This is con-
trolled by the AvailableOperationList directive of [OperationSettings].
The operations for the content module are defined inside kernel/content/
operation_definition.php. You’ll need to create settings/override/
workflow.ini.append.php and containing the following lines:
<?php /*

[OperationSettings]

174 Chapter 5. Extensions 175

AvailableOperationList[]=content_read

*/ ?>

The execute function is the main processing function. This is where the event carries out
its tasks. The function gives access to two variables: process and event. While process
contains an ezworkflowprocess object, the event variable contains an ezworkflow-
event object. These objects can be used to extract and update important information when
the event is running. For example, it is possible to get the ID number of the current node, ob-
ject, user and so on.

Regardless of what it does, the execute function must always return a valid status code. The
example above returns the accepted status, which means that the workflow will continue exe-
cuting the next event in the chain.

An event must register itself using the registerType function of the eZWorkflowEvent-
Type class. This must be done at the very end of the event’s PHP file.

Event example
The following example shows a simple event. It will keep displaying a template until the user
clicks ”Continue”. This template could for example contain an advertisement. The event should
be added to a workflow that is connected to the ”content/read/before” operation. It will fetch the
node that is about to be displayed and make it available in the event’s template.

<?php

define(‘EZ_WORKFLOW_TYPE_EXAMPLE_ID’, ‘ezexample’);

class eZExampleType extends eZWorkflowEventType
{
 function eZExampleType()
 {
 $this->eZWorkflowEventType
 (EZ_WORKFLOW_TYPE_EXAMPLE_ID,
 ‘Example’);
 $this->setTriggerTypes(array
 (‘content’ => array(‘read’ =>
 array (‘before’))));
 }
 function execute(&$process, &$event)
 {
 $parameters =& $process->attribute
 (‘parameter_list’);
 $http =& eZHTTPTool::instance();

 if($http->hasPostVariable
 (‘ContinueButton’))
 {
 return EZ_WORKFLOW_TYPE_STATUS_ACCEPTED;

Event example

176 Chapter 5. Extensions 177

 }

 $node =& eZContentObjectTreeNode::fetch
 ($parameters[‘node_id’]);

 $requestUri = eZSys::requestUri();

 $process->Template = array(‘templateName’ =>
 ‘design:workflow/eventtype/result/
 event_ezexample.tpl’,
 ‘templateVars’ =>
 array(‘node’ => $node,
 ‘request_uri’ =>
 $requestUri));

 return EZ_WORKFLOW_TYPE_STATUS_FETCH_
 TEMPLATE_REPEAT;
 }
}

eZWorkflowEventType::registerType(
 EZ_WORKFLOW_TYPE_EXAMPLE_ID,
 ‘ezexampletype’);

?>

The example event’s template will output the name of the node that is about to be displayed. In
addition, it will also provide the form that makes it possible to post an action in order to contin-
ue the workflow. The following example shows the event’s template code (the contents of the
extension/myevent/design/standard/templates/workflow/eventtype/
result/event_ezexample.tpl file).

<h1>Stop!</h1>

You are about to view ”{$node.name|wash}”...

<form method=”post” action=”{$request_uri|ezurl}”>
<input type=”submit” name=”ContinueButton”
 value=”Continue” />
</form>

To implement the extension, clear the caches and create a new workflow using the Administra-
tion Interface. Add the custom event (which should now be available in the dropdown list). En-
able the ”content_read” trigger by adding a global override for workflow.ini (as described
earlier) and have it start the newly created workflow on ”content/read/before” (from within
Triggers under Setup in the Administration Interface).

Test the event by viewing a node. Instead of displaying the node, the system should now run the
workflow which in turn executes the event. The event should show the template containing the
Continue button. Since there are no more events in the workflow, it will self-terminate when
the button is clicked and thus the system will show the node that was requested.

176 Chapter 5. Extensions 177

Appendix A. Appendix

Datatypes
Datatype Summary Searchable Collector

Authors Stores info about additional authors. Yes No
Checkbox Stores a binary value (on or off). Yes Yes
Date Validates and stores a date value. Yes No
Date and time Validates and stores a date and a time value. Yes No
E-mail Validates and stores an email address. Yes Yes
File Stores any type of file. Yes No
Float Validates and stores a decimal value. No No
Identifier Generates a non-editable identification string. Yes No
Image Validates and stores a digital image. No No
Integer Validates and stores an integer value. Yes No
ISBN Validates and stores an ISBN value. Yes No
Keywords Stores keywords. Yes No
Matrix Stores multiple rows and columns of text. Yes No
Media Stores a media file (Flash/QuickTime/Real/etc.). No No
Multi-option Allows option selections. [Webshop] Yes No
Object relation Stores a relation to a content object. Yes No
Object relations Stores relations to other content objects. Yes No
Option Allows an option selection. [Webshop] No Yes
Price Stores a price (including / excluding VAT). [Webshop] Yes No
Range option Allows an integer selection. [Webshop] Yes No
Selection Stores single and multiple choices. Yes No
Text block Stores multiple lines of unformatted text. Yes Yes
Text line Stores a single line of unformatted text. Yes Yes
Time Validates and stores a time value. No No
URL Validates and stores a URL / address. No No
User account Validates and stores info about a user. Yes No
XML block Validates and stores multiple lines of formatted text. Yes No

178 Appendix A. Appendix 179

Note that information collection support has been added to even more datatypes in eZ publish
3.8.

Modules

Module Description

class Provides views for managing classes, class groups, etc.

collabora-
tion

Provides an interface to the collaboration engine.

content Provides views for managing content (nodes, objects, searching, etc.)

error Provides an interface for error handling / reporting.

ezinfo Provides views for displaying information about eZ publish.

form Provides a view that generates an e-mail containing the data that was posted.

infocollec-
tor

Provides views for managing collected information.

layout Provides a view that makes it possible to use alternative pagelayouts.

notification Provides an interface to the notification engine.

package Provides views for importing / exporting packages.

pdf Provides views for configuring PDF exports.

reference Provides a view for displaying documentation generated by Doxygen.

role Provides views for managing roles.

rss Provides views for managing RSS imports and exports.

search Provides a view that displays search statistics.

section Provides views for managing sections.

setup Provides the web-based Setup Wizard.

shop Provides views for the Webshop (basket, wish list, order list, etc.).

trigger Provides a view for managing workflow triggers.

url Provides views for managing the URLs stored in the database.

user Provides views for logging users in / out, password changing, etc.

workflow Provides views for managing workflows, workflow groups, workflow events,
etc.

178 Appendix A. Appendix 179

XML tags
The ”XML block” datatype supports the following tags / elements:

n Headings
n Bold text
n Italic text
n Unformatted text
n Lists
n Tables
n Hyperlinks
n Anchors
n Object embedding
n Custom tags

Headings
Headings / titles can be added by making use of either the h or the header tag. The level
parameter controls the depth of the heading. It must be a number between 1 and 6. The option-
al class parameter allows the use of a desired CSS class. Usage:

<h [level=””] [class=””]>Example</h>

or

<header [level=””] [class=””]>Example</header>

By default, the specified levels are increased by one. In other words, a level 1 header in the
XML block will become a level 2 header (h2) in the resulting HTML. This is because the h1 tag
is reserved for the name / main title of the content object. The headings inside the XML block
will thus become subheadings of the main title. This behavior can be changed by creating an
override template for the content/datatype/view/ezxmltags/header.tpl tem-
plate. (It cannot be controlled from within an configuration file).

Bold text
Bold text can be achieved by using one of the following tags: b, bold or strong. The optional
class parameter allows the use of a desired CSS class. Usage:

<b [class=””]>Bold text.

or

<bold [class=””]>Bold text.</bold>

or

<strong [class=””]>Bold text.

Headings

180 Appendix A. Appendix 181

Italic text
Italic / emphasized text can be achieved by using one of the following tags: i, em or empha-
size. The optional class parameter allows the use of a desired CSS class. Usage:

<i [class=””]>Emphasized text.</i>

or

<em [class=””]>Emphasized text.

or

<emphasize [class=””]>Emphasized text.</emphasize>

Unformatted text
The literal tag can be used to output unformatted text, for example program source code,
HTML code, XML content, etc. Everything that is inside a literal block will be rendered in the
same way (character by character) as it is within the literal tags. (The text will be output us-
ing the HTML pre tag). The optional class parameter allows the use of a desired CSS class.
Usage:

<literal [class=””]>Example</literal>

Lists
To create lists in the same way as in HTML, use the ol, ul and li tags. The lists can be nest-
ed. The optional class parameter allows the use of a desired CSS class. The following exam-
ples demonstrate the usage of ordered and unordered lists.

Ordered lists

<ol [class=””]>
 Element 1
 Element 2
 Element 3

Unordered lists

<ul [class=””]>
 Element 1
 Element 2
 Element 3

Tables
Tables can be created in the same way as in HTML using table, tr, th and td tags. The ta-
bles can be nested. Usage:

180 Appendix A. Appendix 181

<table [class=””] [border=””] [width=””]>
...
</table>

The class, border and width parameters are optional. The class parameter can be used
to assign a desired CSS class. The border parameter can be used to set a border (number of
pixels). The width parameter can be used to control the table width (either 0-100% or number
of pixels). Table content should be written according to normal HTML table syntax with tr,
th and td tags as described below.

Table rows

Table rows can be created in the same way as in HTML:

<tr>Table row content goes here.</tr>

Table headers

Table headers can be created in the same way as in HTML:

<th [class=””] [width=””] [rowspan=””]
 [colspan=””]>Example.</th>

All parameters are optional. The class parameter can be used to set the desired CSS class.
The width parameter can be used to set the width (either as percentage or number of pixels).
The rowspan and colspan parameters are the same as in HTML.

Table cells

Table data / cells can be created in the same way as in HTML:

<td [class=””] [width=””] [rowspan=””]
 [colspan=””]>Example.</td>

All parameters are optional. The class parameter can be used to set the desired CSS class.
The width parameter can be used to set the width (either as percentage or number of pixels).
The rowspan and colspan parameters are the same as in HTML.

Hyperlinks
Hyperlinks can be inserted by making use of the a or the link tags. Usage:

<a href=”” [target=””] [class=””] [title=””]
 [id=””]>Example.

or

<link href=”” [target=””] [class=””] [title=””]
 [id=””]>Example.</link>

The href parameter is required and it must be set to a valid address (either external or inter-
nal). The target parameter can be used to determine how the target URL should be opened
(inside the existing / active browser window / tab or within a new window / tab). The class

Hyperlinks

182 Appendix A. Appendix 183

parameter can be used to specify a CSS class that should be used when the link is rendered. The
title parameter can be used to specify a short description that will be shown when the mouse
pointer is hovering over the link. The id parameter is for assigning unique identifiers.

Internal links

It is possible to create internal links (to other nodes and objects) by making use of the ezn-
ode:// and the ezobject:// notation. The internal links will be created dynamically
based on the node / object ID numbers. In other words, if a node is moved, the link(s) will point
to the new location(s) and thus they will not be broken.

Link to a node

A link to a node can be created either by specifying the target node’s ID number or the node
path. The following examples demonstrate an internal link to a node numbered 128.

Example.

or

<link href=”eznode://128”>Example.</link>

The following examples demonstrate how an internal link to a node located at ”products/
computers/example” can be created.

 Example.

or

<link href=”eznode://products/computers/example”>
Example.</link>

Link to an object

The following examples demonstrate how an internal link to object number 1024 can be cre-
ated.

Example.

or

<link href=”ezobject://1024”>Example.</link>

When object linking is used, the destination address will be generated using the main node as-
signment of the target object.

Anchors

The ”anchor” tag makes it possible to insert HTML anchors inside the XML block. The insert-
ed anchors will work like standard HTML anchors. Usage:

<anchor name=”” />

182 Appendix A. Appendix 183

The name parameter must be set to a unique identifier for the anchor. Anchors can be reached
by appending the hash character (#) followed directly by the name of the anchor that the brows-
er should jump to, for example ”http://www.example.com/hobbies#music”).

Object embedding
The embed tag makes it possible to insert an arbitrary content object directly in the XML block.
It can for example be used to embed images. Usage:

<embed href=”” [view=””] [align=””] [target=””]
 [size=””] [id=””] />

Parameter Description Required

href The href parameter must be a valid link to either a node or an ob-
ject using the same notation as for hyperlinks (for example ”eznode:
//134”, ”eznode://path/to/some/node” and ”ezobject://1024”). If the
provided link is a link to a node, eZ publish will use the object that is
encapsulated by that node. In other words, in both cases it is the ob-
ject that will be inserted (the node notation is just a wrapper).

Yes

view The view parameter makes it possible to specify the view that
should be used when the object is rendered (for example ”full”,
”line”, etc.).

No

align The align parameter can be used to specify the positioning of the
embedded object. Possible values are left, center and right.

No

target The target parameter can be used to set the opening method
(same browser tab / window or new browser tab / window) for the
embedded item (for example _self, _blank, etc.).

No

size The size parameter can be used to set the image size that should
be used when an image object is included (for example ”small”,
”medium”, ”large”, etc.).

No

id The id parameter makes it possible to assign a unique ID which
will be the ID attribute in the resulting HTML.

No

Custom tags
In addition to the default tags described above, the ”XML block” datatype makes it possible to
use custom tags. A custom tag can be used both as a block or an inline element. Custom tags
must be specified using the AvailableCustomTags[] array in the [CustomTagSet-
tings] block within an override for the content.ini configuration file. (This is also
where you can specify whether the tag should be a block or an inline element.) When the XML
is rendered, the contents of a custom tag will be replaced by a custom template. The name of
the template must be specified using the name parameter. Example of usage:

Object embedding

184 Appendix A. Appendix 185

<custom name=”template_name”
 [custom_parameter=”value” [...]]>
The quick brown fox jumps over the lazy dog.
</custom>

The custom tag in the example above will be replaced by a template called template_
name.tpl. This template must be located in the following directory within the current de-
sign: templates/content/datatype/view/ezxmltags/ (or one of the fallback
designs). It is also possible to create an override template. The contents of the tag will be avail-
able in the $content variable within the inserted template. The custom parameters are op-
tional. When used, a custom parameter will be available as a template variable with the same
name as was specified in the tag itself.

184 Appendix A. Appendix 185

Glossary

CSS Cascading Style Sheets - a construct that works with HTML to give both web
developers and user agents more control over page display. CSS allows design-
ers to create style sheets that define how different elements (for example head-
ers, links, images, etc.) should appear. The style sheets can then be applied to
any web page. Changing the stylesheet will result in a change of all web pages
using that style sheet.

DNS Domain Name System (or Service or Server) - an internetbased service that
translates domain names (such as www.example.com) into IP addresses (for
example 60.70.12.130) and vice versa. While humans prefer to work with do-
main names, computers work with IP addresses; the DNS provides an inter-
face.

HTML Hyper Text Markup Language - a language designed for the creation of web
pages and other information viewable in a browser. HTML is typically used to
structure information, such as headings, paragraphs, lists, images and so on. It
can be used to define the semantics of a document.

HTTP Hyper Text Transfer Protocol - the primary method used to convey information
on the World Wide Web.

LDAP Lightweight Directory Access Protocol - a relatively simple protocol for updat-
ing and searching directories running over TCP/IP.

MTA Mail Transfer Agent - an application that handles sending and receiving e-mails
to and from the host / system where it is installed.

SOAP An XML-based lightweight protocol for exchanging information.

SMTP Simple Mail Transfer Protocol - a protocol used to send email messages be-
tween computers.

PDF Portable Document Format - Adobe Systems’ widely used file format that al-
lows the electronic representation of documents in a paged form. It is supported
on all major computer platforms.

186 187

PHP PHP Hypertext Preprocessor - an open source, serverside HTML-centric script-
ing language that can be used to create dynamic web pages.

Unicode A 16-bit character encoding scheme that supports all languages (Western, East-
ern, Cyrillic, Greek, Arabic, Hebrew, Chinese, Japanese, Korean, Thai, Urdu,
Hindi, etc.) within a single character set. In addition, the specification includes
standard compression schemes and a wide range of typesetting information re-
quired for worldwide locale support.

URL Uniform Resource Locator - a way of specifying the location of something on
the internet, for example http://www.example.com/hello.html. The
part before the colon specifies the protocol; the part after the colon specifies a
unique address.

UTF-8 An encoding scheme for storing Unicode code points in terms of 8-bit bytes.
Characters are encoded using sequences of 1, 2, 3 or 4 bytes. Characters in the
ASCII character set are all represented using a single byte.

W e b -
DAV

Web-based Distributed Authoring and Versioning - a set of extensions to the
HTTP protocol that allow users to collaboratively view, edit and manage files
on remote web servers.

XHTML eXtensible Hypertext Markup Language - a reformulation of HTML 4.0 in XML
1.0. XHTML is a new and widely used language for creating web pages.

XML Extensible Markup Language - a rich and highly portable format for defining
complex documents and data structures.

Glossary

186 187

Index

Symbole

$node, 89

A

Access control, 77
Policy, 79
Role, 80
User account , 78
User group, 79

Access methods, 67
Host, 68
Port, 68
URI , 67

Apache,
Installation requirements, 15

B

Backup, 160
Breadcrumbs, 140
Button

Edit, 152
New, 149
Remove, 152

C

Cascading Style Sheets, 92
Class, 38
Class attributes, 41

Datatype-specific controls, 43
Generic controls, 41

Information collector, 42
Required, 41
Searchable, 42
Translatable, 42

Identifier, 41
Name, 41

Configuration, 64
Overrides, 64

Content, 34
Separation from design, 34

Content class, 38
Structure, 39

Attributes, 40
Container flag, 40
Identifier, 40
Name, 39
Object name pattern, 40

Content management, 36
Object-oriented content structure, 37

Content node, 52
Content node tree, 54
Content object, 43
Core.css, 92
Cronjobs, 136
CSS, 92

D

Data storage, 35
Data structure

Attributes, 37
Content class, 37
Datatypes, 37
Versions, 37

Database, 36
Dumping, 159
Restore, 160

Datatype, 37
Debug.css, 93
Debug information, 94
Design, 34,74

Alternate, 153
Combinations, 75

Fallback, 75
Custom, 137
Default, 74
Separation from content, 34

Directory structure, 33

188 189

Discount rules, 82
DO...WHILE, 114

E

E-commerce, 81
Extensions , 162

Activation, 162
Datatype extensions, 164
Design extensions, 163
Directory structure, 162
Template operator extensions , 167
Workflow extension, 171

EZ publish
Content, 34
Design, 34
Directory structure, 33
Kernel, 31
Libraries, 31
Modules, 32

Ezdesign, 120
Ezimage, 120
Ezurl, 119

F

Feedback forms, 148
FOR, 114
FOREACH, 115

G

GD graphics library
Installation requirements, 15

I

IF, 112
ImageMagick

Installation requirements, 15
Images

Adding, 138
Information collection, 63
Installation

Automated installation, 15
Bundled installation, 15
Database setup, 16

Index

MySQL, 16
PostgreSQL, 16

Manual installation, 15
Normal installation, 15
Requirements, 15

Apache, 15
Database, 16
Image conversion, 16
PHP, 15

Setup Wizard , 15
Access Method page, 26
Database Configuration page, 23
Initiating, 19
Language Configuration page, 24
Outgoing E-mail page, 22
Site Details page, 27
Site Functionality page, 25
Site Registration page, 29
Site Security page, 28
Site Type page, 25
System Check page, 21
Welcome page, 20

K

Kernel, 31

L

Libraries, 31

M

Managing content, 36
Meta tags, 95
Modules, 32, 69

Fetch functions, 32
Views, 32

Multiple languages, 49
Access control, 52
Implementation, 50
Non-translatable attributes, 51

MySQL
Database setup, 16
Installation requirements, 15

188 189Index

N

Node, 52
Structure, 52
Top-level, 56
Tree, 54
Visibility, 58

Node templates, 87
Node tree, 54
Node_view_gui, 154

O

Object, 43
Structure, 43
Versioning, 45

Oracle, 17
Installation requirements, 15

P

Pagelayout, 90
Variables, 97

PDF
Export, 154

PHP
Installation requirements, 15

Policy, 79
PostgreSQL

Database setup, 16
Installation requirements, 15

Price, 82
Printer-friendly output, 153

R

Role, 80

S

Scheduled tasks, 137
Search

Interface, 141
Page limit, 141
Reindexing, 142

Sections, 61
Setup Wizard

Access Method page, 26

Database Configuration page, 23
Initiating, 19
Language Configuration page, 24
Outgoing E-mail page, 22
Site Details page, 27
Site Functionality page, 25
Site Registration page, 29
Site Security page, 28
Site Type page, 25
System Check page, 21
Welcome page, 20

Site.ini
Example of global override, 133

Siteaccess, 65
Example (admin), 132
Example (public), 129
Setting up, 134

SWITCH, 113
System templates, 89

T

Templates, 34, 85, 102
Basic tasks, 117
Comments, 103
Control structures, 112
Curly braces, 102
Custom, 139
Functions, 115
Operators, 116
Override system, 124
Variables, 104

Top-level nodes, 56

U

URL
Handling in templates, 118
Storage, 62
System, 71
Translation, 71
Virtual, 72

User account, 78
User group, 79
User ID, 79

190

V

VAT, 81
View templates, 87
Views, 69

Default request, 71
Parameters, 70
POST variables, 71

Virtual host setup, 134

Index

W

Webshop, 80
Discount rules, 82
Price datatype, 82
Shop-related datatypes, 83
VAT, 81

WHILE, 113
Workflow, 83

